# **European Commission**



Combined Draft Renewal Assessment Report prepared according to Regulation (EC) N° 1107/2009 and Proposal for Harmonised Classification and Labelling (CLH Report) according to Regulation (EC) N° 1272/2008

# Glyphosate

**List of End Points** 

Rapporteur Member State : Assessment Group on Glyphosate (AGG) consisting of FR, HU, NL and SE

## **Version History**

| When    | What        |
|---------|-------------|
| 2021/06 | Initial RAR |
|         |             |
|         |             |
|         |             |

The RMS is the author of the Assessment Report. The Assessment Report is based on the validation by the RMS, and the verification during the EFSA peer-review process, of the information submitted by the Applicant in the dossier, including the Applicant's assessments provided in the summary dossier. As a consequence, data and information including assessments and conclusions, validated and verified by the RMS experts, may be taken from the applicant's (summary) dossier and included as such or adapted/modified by the RMS in the Assessment Report. For reasons of efficiency, the Assessment Report should include the information validated/verified by the RMS, without detailing which elements have been taken or modified from the Applicant's assessment. As the Applicant's summary dossier is published, the experts, interested parties, and the public may compare both documents for getting details on which elements of the Applicant's dossier have been validated/verified and which ones have been modified by the RMS. Nevertheless, the views and conclusions of the RMS should always be clearly and transparently reported; the conclusions from the applicant should be included as an Applicant's statement for every single study reported at study level; and the RMS should justify the final assessment for each endpoint in all cases, indicating in a clear way the Applicant's assessment and the RMS reasons for supporting or not the view of the Applicant.

## Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

| Active substance (ISO Common Name)                                                                                                                 | Glyphosate; N-(phosphonomethyl)glycine                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Function (e.g. fungicide)                                                                                                                          | Herbicide                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Rapporteur Member State                                                                                                                            | The Assessment Group on Glyphosate                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Co-rapporteur Member State                                                                                                                         | None                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Identity (Regulation (EU) N° 283/2013, Annex                                                                                                       | Part A, point 1)                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Chemical name (IUPAC)                                                                                                                              | N-(phosphonomethyl)glycine                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Chemical name (CA)                                                                                                                                 | Glycine, N-(phosphonomethyl)-                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| CIPAC No                                                                                                                                           | 284                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| CAS No                                                                                                                                             | 1071-83-6                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| EC No (EINECS or ELINCS)                                                                                                                           | 213-997-4                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| FAO Specification (including year of publication)                                                                                                  | 284/TC (2014) applicable to material of Monsanto,<br>Cheminova, Syngenta and Helm<br>-Glyphosate: ≥ 950 g/kg<br>-Formaldehyde: maximum 1.3 g/kg of the<br>glyphosate acid<br>-N-Nitroso-glyphosate: maximum 1 mg/kg of the<br>glyphosate acid<br>-Insolubles in 1 M NaOH: maximum 0.2 g/kg |  |  |  |  |  |  |  |
| Minimum purity of the active substance as manufactured                                                                                             | 950 g/kg                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Identity of relevant impurities (of<br>toxicological, ecotoxicological and/or<br>environmental concern) in the active substance<br>as manufactured | Formaldehyde < 1 g/kg<br>N-Nitroso-glyphosate (NNG) < 1 mg/kg<br>Formic acid < 4 g/kg<br>Triethylamine < 2 g/kg                                                                                                                                                                            |  |  |  |  |  |  |  |
| Location of the (proposed) reference specification (for significant impurities)                                                                    | RAR Volume 4 (2021)                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Molecular formula                                                                                                                                  | $C_3H_8NO_5P$                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Molar mass                                                                                                                                         | 169.1 g/mol                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Structural formula                                                                                                                                 | $\begin{array}{c c} HO & CH_2 & CH_2 & OH \\ HO & H & H & O \\ O & H & O \end{array}$                                                                                                                                                                                                      |  |  |  |  |  |  |  |

| Chemical name (IUPAC)                                                                                                                              | N-(phosphonomethyl)glycine isopropylammonium                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Chemical name (CA)                                                                                                                                 | N-(phosphonomethyl)glycine isopropylammonium salt                                                               |
| CIPAC No                                                                                                                                           | 284.105                                                                                                         |
| CAS No                                                                                                                                             | 38641-94-0                                                                                                      |
| EC No (EINECS or ELINCS)                                                                                                                           | 254-056-8                                                                                                       |
| FAO Specification (including year of publication)                                                                                                  | No FAO specification                                                                                            |
| Minimum purity of the active substance as manufactured                                                                                             | 950 g/kg                                                                                                        |
| Identity of relevant impurities (of<br>toxicological, ecotoxicological and/or<br>environmental concern) in the active substance<br>as manufactured | Formaldehyde < 1 g/kg<br>N-Nitroso-glyphosate (NNG) < 1 mg/kg<br>Formic acid < 4 g/kg<br>Triethylamine < 2 g/kg |
| Location of the (proposed) reference specification (for significant impurities)                                                                    | RAR Volume 4 (2021)                                                                                             |
| Molecular formula                                                                                                                                  | C <sub>6</sub> H <sub>17</sub> N <sub>2</sub> O <sub>5</sub> P                                                  |
| Molar mass                                                                                                                                         | 228.18 g/mol                                                                                                    |
| Structural formula                                                                                                                                 | $\begin{bmatrix} -O \\ -O $                                                 |

Chemical name (IUPAC)

Chemical name (CA)

CIPAC No

CAS No

EC No (EINECS or ELINCS)

FAO Specification (including year of publication)

Minimum purity of the active substance as manufactured

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Location of the (proposed) reference specification (for significant impurities)

Molecular formula

N-(phosphonomethyl)glycine monoammonium salt N-(phosphonomethyl)glycine ammonium salt

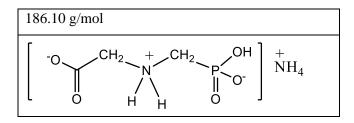
284.007

114370-14-8

601-309-9

No FAO specification

950 g/kg


Formaldehyde < 1 g/kg N-Nitroso-glyphosate (NNG) < 1 mg/kg Formic acid < 4 g/kg Triethylamine < 2 g/kg

RAR Volume 4 (2021)

 $C_3H_{11}N_2O_5P$ 

Molar mass

Structural formula



Chemical name (IUPAC)

Chemical name (CA)

CIPAC No

CAS No

EC No (EINECS or ELINCS)

FAO Specification (including year of publication)

Minimum purity of the active substance as manufactured

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Location of the (proposed) reference specification (for significant impurities)

Molecular formula

Molar mass

Structural formula

N-(phosphonomethyl)glycine monopotassium salt

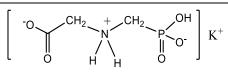
N-(phosphonomethyl)glycine potassium salt

284.019

39600-42-5

687-795-3

No FAO specification


950 g/kg

Formaldehyde < 1 g/kg N-Nitroso-glyphosate (NNG) < 1 mg/kg Formic acid < 4 g/kg Triethylamine < 2 g/kg

RAR Volume 4 (2021)

C<sub>3</sub>H<sub>7</sub>KNO<sub>5</sub>P

207.19 g/mol



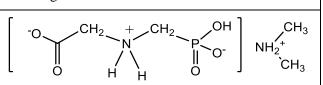
| Chemical name (IUPAC)                                  | N-(phosphonomethyl)glycine dimethylammonium salt |  |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|
| Chemical name (CA)                                     | N-(phosphonomethyl)glycine dimethylammonium salt |  |  |  |  |  |  |
| CIPAC No                                               | 284.102                                          |  |  |  |  |  |  |
| CAS No                                                 | 1071-83-6                                        |  |  |  |  |  |  |
| EC No (EINECS or ELINCS)                               | 696-134-8                                        |  |  |  |  |  |  |
| FAO Specification (including year of publication)      | No FAO specification                             |  |  |  |  |  |  |
| Minimum purity of the active substance as manufactured | 950 g/kg                                         |  |  |  |  |  |  |

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Location of the (proposed) reference specification (for significant impurities)

Molecular formula

Molar mass


Structural formula

Formaldehyde < 1 g/kg N-Nitroso-glyphosate (NNG) < 1 mg/kg Formic acid < 4 g/kg Triethylamine < 2 g/kg

RAR Volume 4 (2021)

 $C_5H_{15}N_2O_5P$ 

214.15 g/mol



## Physical and chemical properties (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, point 2)

| Melting point (state purity)                | <b>Glyphosate acid</b> : 189.5 °C (99.9 %)                                            |
|---------------------------------------------|---------------------------------------------------------------------------------------|
|                                             | <b>Glyphosate IPA salt</b> : 143 – 164 °C (DSD method);<br>110 – 113 °C (OECD 102)    |
|                                             | <b>Glyphosate NH4 salt:</b> Decomposed at temperature >190 °C without melting         |
|                                             | Glyphosate K salt: 219.8 °C                                                           |
|                                             | <b>Glyphosate DMA salt</b> : Pure glyphosate DMA salt can technically not be isolated |
| Boiling point (state purity)                | Not applicable because glyphosate and its salts decompose during melting              |
| Temperature of decomposition (state purity) | <b>Glyphosate acid</b> : 200 °C (99.6 %)                                              |
|                                             | Glyphosate IPA salt: > 282 °C (98.1%)                                                 |
|                                             | <b>Glyphosate NH4 salt</b> : > 190 °C (97.9%)                                         |
|                                             | <b>Glyphosate K salt</b> : 223.9 °C (98.4%)                                           |
|                                             | Glyphosate DMA salt: >280 °C (62.1%)                                                  |
| Appearance (state purity)                   | Glyphosate acid: White solid (99.6 %)                                                 |
|                                             | Glyphosate IPA salt: White powder (96.9 %)                                            |
|                                             | <b>Glyphosate NH4 salt</b> : White crystalline powder (97.9 %)                        |
|                                             | <b>Glyphosate K salt</b> : White crystalline solid (98.4 %)                           |
|                                             | Glyphosate DMA salt: Yellow liquid (62.1 %)                                           |

| Vapour pressure (state temperature, state purity) | <b>Glyphosate acid</b> : $1.31 \times 10^{-5}$ Pa at 25 °C (98.6 %)                                                                                                                                  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | <b>Glyphosate IPA salt</b> : At 98 %<br>1.3 × 10 <sup>-6</sup> Pa (25 °C); 0.7 × 10 <sup>-6</sup> Pa (20 °C)                                                                                         |
|                                                   | <b>Glyphosate NH4 salt</b> : 9.0 × 10 <sup>-6</sup> Pa (25 °C) (97.9 %)                                                                                                                              |
|                                                   | <b>Glyphosate K salt</b> : < 5.8 × 10 <sup>-3</sup> Pa (25 °C) at 91.8 %; < 1.5 × 10 <sup>-3</sup> Pa (20 °C) at 91.8%                                                                               |
|                                                   | <b>Glyphosate DMA salt</b> : Pure glyphosate DMA salt can technically not be isolated.                                                                                                               |
| Henry's law constant (state temperature)          | Glyphosate acid : $< 2.21 \times 10^{-8}$ Pa m <sup>3</sup> mol <sup>-1</sup> (25 °C)                                                                                                                |
|                                                   | Glyphosate IPA salt: $4.6 \times 10^{-10} \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1}$<br>(25 °C)                                                                                              |
|                                                   | <b>Glyphosate NH4 salt</b> : $< 8.6 \times 10^{-9} \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1}$                                                                                                |
|                                                   | <b>Glyphosate K salt:</b> $1.31 \times 10^{-6} \text{ Pa} \cdot \text{m}^{3} \cdot \text{mol}^{-1}$<br>(25 °C) ; < $3.38 \times 10^{-7} \text{ Pa} \cdot \text{m}^{3} \cdot \text{mol}^{-1}$ (20 °C) |
|                                                   | Glyphosate DMA salt: /                                                                                                                                                                               |

Solubility in water (state temperature, state purity and pH)

Glyphosate acid: Solubility at 20 °C (99.9 %) > 100 g/L (pH 5) > 100 g/L (pH 7) 171 g/L (pH 9)

10.5 g/L under un-buffered water (pH 1.90 – 1.98) (99.5 %)

## **Glyphosate IPA salt**:

1050 g/L at 20 °C (pH 4.3, pure water) 627 g/L (pH 3.9, acidic medium) 990 g/L (pH 6.2, alkaline medium)

## **Glyphosate NH4 salt**:

212 g/L at 20 °C (pH 5) 195 g/L at 20 °C (pH 7) 190 g/L at 20 °C (pH 9)

#### Glyphosate K salt:

923.3 g/L at 20 °C (pH 4) 918.7 g/L at 20 °C (pH 7) 902.5 g/L at 20 °C (pH 9)

## **Glyphosate DMA salt:**

Pure glyphosate DMA salt can technically not be isolated.

Solubility in organic solvents (state temperature, state purity)

#### **Glyphosate acid:**

Solubility at 20 °C (96.9 %) acetone < 0.6 mg/L 1,2-dichloroethane < 0.6 mg/L ethyl acetate < 0.6 mg/L heptane < 0.6 mg/L methanol 10 mg/L octan-1-ol < 0.6 mg/L xylenes < 0.6 mg/L acetonitrile 0.8 mg/L

### Glyphosate IPA salt: at 23°C

Methanol: 19.86 g/L Hexane: < 0.05 g/L Toluene: < 0.05 g/L Dichloromethane: < 0.05 g/L Acetone: < 0.05 g/L Ethyl acetate: < 0.05 g/L

## Glyphosate NH4 salt: at 20°C

Acetone: 2.3 mg/L Ethylene dichloride: <1.3 mg/L Methanol: 159 mg/L Heptane: <1.3 mg/L Ethyl acetate: <1.3 mg/L Xylene: <1.3 mg/L

## **Glyphosate K salt:** at 20°C

Acetone: < 10.2 mg/L Dichloromethane: < 10.2 mg/L Methanol: 217 mg/L Heptane: < 10.2 mg/L Ethyl acetate: < 10.2 mg/L Toluene: < 10.2 mg/L

#### **Glyphosate DMA salt:**

Pure glyphosate DMA salt can technically not be isolated.

| Surface tension<br>(state concentration and temperature, state<br>purity) | Glyphosate acid: 72.2 mN/m at 20 °C (90 % saturated solution) (96.9 %)                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| F                                                                         | Glyphosate IPA salt: 72.8 mN/m at 20 °C (96.7 %)                                                                        |  |  |  |  |  |
|                                                                           | <b>Glyphosate NH4 salt:</b> 1 g/L in distilled water:<br>71.7 mN/m; 0.502 g/L in distilled water:<br>71.7 mN/m (97.9 %) |  |  |  |  |  |
|                                                                           | <b>Glyphosate K salt:</b> 72.7 mN/m at 1 g/L in distilled water (91.8 %)                                                |  |  |  |  |  |
|                                                                           | <b>Glyphosate DMA salt:</b> 74.5 mN/m at 25 °C (undiluted); 73.0 mN/m at 40 °C (undiluted) (60.8 %)                     |  |  |  |  |  |
| Partition coefficient                                                     | Glyphosate acid:                                                                                                        |  |  |  |  |  |
| (state temperature, pH and purity)                                        | Log Pow = $-5.39$ at 25 °C (at pH buffers at 5)                                                                         |  |  |  |  |  |
|                                                                           | Log Pow = $-6.28$ at 25 °C (at pH buffers at 7)                                                                         |  |  |  |  |  |
|                                                                           | Log Pow = -5.83 at 25 °C (at pH buffers at 9)                                                                           |  |  |  |  |  |
|                                                                           | Glyphosate IPA salt:                                                                                                    |  |  |  |  |  |
|                                                                           | Log Pow = $-4.16$ at 20 °C                                                                                              |  |  |  |  |  |
|                                                                           | (at pH buffers $4.3 - 6.2$ )                                                                                            |  |  |  |  |  |
|                                                                           | Glyphosate NH4 salt:                                                                                                    |  |  |  |  |  |
|                                                                           | Log Pow = < -3.7 at 20 °C (at pH 3.16)                                                                                  |  |  |  |  |  |
|                                                                           | <b>Glyphosate K salt:</b><br>Log Pow = < -0.7 at 20 °C, (at pH 3.16) (shake flask method)                               |  |  |  |  |  |
|                                                                           | <b>Glyphosate DMA salt:</b> Pure glyphosate DMA salt can technically not be isolated                                    |  |  |  |  |  |

Dissociation constant (state purity)

UV/VIS absorption (max.) incl.  $\epsilon$  (state purity, pH)

## **Glyphosate acid**

 $pKa_1 = 2.34 (99 \%)$  $pKa_1 = 5.73 (99 \%)$ 

#### **Glyphosate IPA salt:**

 $\begin{array}{l} pKa1 = 2.18 \pm 0.02 \; (98.1 \; \%) \\ pKa2 = 5.77 \pm 0.03 \; (98.1 \; \%) \end{array}$ 

## Glyphosate NH4 salt:

 $pKa = 5.52 \pm 0.022 \; (97.51 \; \%)$ 

**Glyphosate K salt:** pKa = 5.73 ± 0.080 (91.8 %)

## **Glyphosate DMA salt:**

Pure glyphosate DMA salt can technically not be isolated.

#### **Glyphosate acid**

Aqueous solution (97.7 %):  $\epsilon$  at 200 (nm): 122 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 7.19) 760 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 1.99) 712 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 10.29)

 $\epsilon$  at 290 nm: < 10 L mol<sup>-1</sup> cm<sup>-1</sup>

## **Glyphosate IPA salt:**

ε at 200 (nm): 279 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 7.19) 233 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 1.99) 534 L mol<sup>-1</sup> cm<sup>-1</sup> (pH 10.29)

**Glyphosate NH4 salt**: No maximum absorption in the range 220 - 800 nm

**Glyphosate K salt:** No maximum in the range 200 - 900 nm at pH 1, pH 5 and pH 13

**Glyphosate DMA salt:** Pure glyphosate DMA salt can technically not be isolated.

| Flammability (state purity)         | Glyphosate acid is not flammable substance (97.7 %)                  |
|-------------------------------------|----------------------------------------------------------------------|
|                                     | Glyphosate IPA salt is not flammable substance (96.7 %)              |
|                                     | Glyphosate NH4 salt is not flammable substance (97.9 %)              |
|                                     | Glyphosate K salt is not flammable substance (91.8 %)                |
| Explosive properties (state purity) | Glyphosate acid is not explosive                                     |
|                                     | Glyphosate IPA salt is not explosive (96.7%)                         |
|                                     | Glyphosate NH4 salt is not explosive (97.9 %)                        |
|                                     | Glyphosate K salt is not explosive (91.8 %)                          |
|                                     | Glyphosate DMA salt is not explosive (60.8%)                         |
| Oxidising properties (state purity) | Glyphosate technical material is not an oxidising substance (96.9 %) |
|                                     | Glyphosate IPA salt is not an oxidising substance (96.7 %)           |
|                                     | Glyphosate NH4 salt is not an oxidising substance (97.9 %)           |
|                                     | Glyphosate K salt is not an oxidising substance (91.8 %)             |
|                                     | Glyphosate DMA salt is not an oxidising substance (60.8 %)           |

Summary of representative uses evaluated, for which all risk assessments needed to be completed (*glyphosate as isopropylammonium salt*) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

| PPP (product name/code)<br>active substance 1 | MON 52276<br>glyphosate as isopropylammonium salt | Formulation type:<br>Conc. of as 1:<br>expressed as glyphosate acid, | SL<br>360 g/L (486 g/L isopropylammonium salt) -<br>which corresponds to 360 g/L for MON 52276 |
|-----------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| safener<br>synergist                          | -                                                 | Conc. of safener:<br>Conc. of synergist:                             | :                                                                                              |
| Applicant:<br>Zone(s):                        | GRG<br>central, southern and northern             | professional use<br>non-professional use                             |                                                                                                |
| Verified by MS:                               | y/n                                               |                                                                      |                                                                                                |

| 1    | 2          | 3                                                                                                                                              | 4                | 5                                                                                                                  | 6                                        | 7                                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13     | 14                                                                                                                                                                                                                                   |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member     | Crop and/                                                                                                                                      | F                | Pests or                                                                                                           | Application                              |                                                                |                                                                                                   | Application rate                                                                             |                                                                                |                               | PHI    | Remarks:                                                                                                                                                                                                                             |
| No.  | state(s)   | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                                     | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                         | Timing / Growth<br>stage of crop &<br>season                   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | (days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                      |
| PRE- | SOWING, PR | E-PLANTING, PRI                                                                                                                                | E-EN             | <b>IERGENCE</b>                                                                                                    |                                          |                                                                |                                                                                                   |                                                                                              |                                                                                |                               |        |                                                                                                                                                                                                                                      |
| 1a   | EU         | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Emerged<br>annual<br>weeds,<br>emerged<br>perennial<br>and<br>biennial<br>weeds<br>BBCH ><br>13                    | Tractor<br>mounted<br>broadcast<br>spray | Pre-sowing, Pre-<br>planting, Pre-<br>emergence of the<br>crop | a) 1<br>b) 1                                                                                      | a) 4 L/ha<br>b) 4 L/ha                                                                       | a) 1.44 kg as/ha<br>b) 1.44 kg as//ha                                          | 100 - 400                     | N/A    | Also applicable to renovation /<br>change of land use applications.<br>Application to 100 % of the field.<br>Use 75 % drift reducing nozzles.<br>Maximum application rate of<br>1.44 kg as/ha glyphosate in any 12<br>months period. |

| 1    | 2         | 3                                                                                                                                              | 4                | 5                                                                                                                  | 6                                        | 7                                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13    | 14                                                                                                                                                                                                                                                                                                                                                                             |
|------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member    | Crop and/                                                                                                                                      | F                | Pests or                                                                                                           | Application                              |                                                                |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI   | Remarks:                                                                                                                                                                                                                                                                                                                                                                       |
| No.  | state(s)  | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                                     | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                         | Timing / Growth<br>stage of crop &<br>season                   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                |
| 1b   | EU        | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Emerged<br>annual<br>weeds,<br>emerged<br>perennial<br>and<br>biennial<br>weeds<br>(BBCH 13<br>- 21)               | Tractor<br>mounted<br>broadcast<br>spray | Pre-sowing, Pre-<br>planting, Pre-<br>emergence of the<br>crop | a) 1<br>b) 1                                                                                      | a) 3 L/ha<br>b) 3 L/ha                                                                       | a) 1.08 kg as/ha<br>b) 1.08 kg as//ha                                          | 100 - 400                     | N/A   | Also applicable to renovation /<br>change of land use applications.<br>Application to 100 % of the field.<br>Use 75 % drift reducing nozzles.<br>Maximum application rate of<br>1.08 kg as/ha glyphosate in any 12<br>months period.                                                                                                                                           |
| 1c   | EU        | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Emerged<br>annual<br>weeds                                                                                         | Tractor<br>mounted<br>broadcast<br>spray | Pre-sowing, Pre-<br>planting, Pre-<br>emergence of the<br>crop | a) 1<br>b) 1                                                                                      | a) 2 L/ha<br>b) 2 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 0.72 kg as/ha                                           | 100 - 400                     | N/A   | Also applicable to renovation /<br>change of land use applications.<br>Application to 100 % of the field.<br>Use 75 % drift reducing nozzles.<br>Maximum application rate of<br>0.72 kg as/ha glyphosate in any 12<br>months period.                                                                                                                                           |
| POST | -HARVEST, | PRE-SOWING, PR                                                                                                                                 | E-PI             | ANTING                                                                                                             | 1                                        | 1                                                              |                                                                                                   | 1                                                                                            | 1                                                                              |                               | 1     |                                                                                                                                                                                                                                                                                                                                                                                |
| 2a   | EU        | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Emerged<br>annual,<br>perennial<br>and<br>biennial<br>weeds                                                        | Tractor<br>mounted<br>broadcast<br>spray | Post-harvest, pre-<br>sowing, pre-<br>planting                 | a) 1 – 2<br>(28 days)<br>b) 1 – 2<br>(28 days)                                                    | a) 3 – 4 L/ha<br>b) 6 L/ha                                                                   | a) 1.08 – 1.44 kg as/ha<br>b) 2.16 kg as/ha                                    | 100 - 400                     | N/A   | <ul> <li>Application to existing row cropland after harvest for removal of remaining crop / stubble and for control of actively growing weeds and mature annual weeds with hardened-off surface</li> <li>Application to 100 % of the field. Use 75 % drift reducing nozzles.</li> <li>Maximum application rate of 2.16 kg as/ha glyphosate in any 12 months period.</li> </ul> |

| 1           | 2        | 3                                                                                                                                              | 4           | 5                                                                                                                  | 6                                        | 7                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13            | 14                                                                                                                                                                                                                                                                                                                       |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use-<br>No. | Member   | Crop and/<br>or situation                                                                                                                      | F<br>G      | Pests or                                                                                                           | Application                              | 1                                              |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI<br>(days) | Remarks:                                                                                                                                                                                                                                                                                                                 |
| <b>NO.</b>  | state(s) | (crop destination<br>/ purpose of<br>crop)                                                                                                     | o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                         | Timing / Growth<br>stage of crop &<br>season   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | (uays)        | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                          |
| 2b          | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F           | Emerged<br>annual,<br>perennial<br>and<br>biennial<br>weeds                                                        | Tractor<br>mounted<br>broadcast<br>spray | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days)                                                    | a) 2 – 3 L/ha<br>b) 6 L/ha                                                                   | a) 0.72 – 1.08 kg as/ha<br>b) 2.16 kg as/ha                                    | 100 - 400                     | N/A           | Application to existing row cropland<br>after harvest for removal of<br>remaining crop / stubble and for<br>control of actively growing weeds.<br>Application to 100 % of the field.<br>Use 75 % drift reducing nozzles.<br>Maximum application rate of<br>2.16 kg as/ha glyphosate in any 12<br>months period.          |
| 2c          | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F           | Emerged<br>annual<br>weeds                                                                                         | Tractor<br>mounted<br>broadcast<br>spray | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days)                                                    | a) 2 L/ha<br>b) 6 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 2.16 kg as/ha                                           | 100 - 400                     | N/A           | Application to existing row cropland<br>after harvest for removal of<br>remaining crop / stubble and for<br>control of actively growing annual<br>weeds<br>Application to 100 % of the field.<br>Use 75 % drift reducing nozzles.<br>Maximum application rate of<br>2.16 kg as/ha glyphosate in any 12<br>months period. |
| 3a          | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F           | Cereal<br>volunteers                                                                                               | Tractor<br>mounted<br>broadcast<br>spray | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1<br>b) 1                                                                                      | a) 1.5 L/ha<br>b) 1.5 L/ha                                                                   | a) 0.54 kg as/ha<br>b) 0.54 kg as/ha                                           | 100 - 400                     | N/A           | Application to existing row cropland<br>after harvest for removal of cereal<br>volunteers.<br>Maximum application rate of<br>0.54 kg as/ha glyphosate in any 12<br>months period.                                                                                                                                        |

| 1    | 2                | 3                                                                                                                                              | 4                | 5                                                                                                                  | 6                                                                | 7                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member           | Crop and/                                                                                                                                      | F                | Pests or                                                                                                           | Application                                                      |                                                |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI    | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No.  | state(s)         | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                                     | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                                 | Timing / Growth<br>stage of crop &<br>season   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | (days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                                                                              |
| 3b   | EU               | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Cereal<br>volunteers                                                                                               | Tractor<br>mounted<br>broadcast<br>spray                         | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1<br>b) 1                                                                                      | a) 1.5 L/ha<br>b) 1.5 L/ha                                                                   | a) 0.54 kg as/ha<br>b) 0.54 kg as/ha                                           | 100 - 400                     | N/A    | Application to existing row cropland<br>after harvest for removal of cereal<br>volunteers once every three years.<br>Maximum application rate of<br>0.54 kg as/ha glyphosate in any 36<br>months period.                                                                                                                                                                                                                                     |
| POST | <b>F-EMERGEN</b> | CE OF WEEDS                                                                                                                                    |                  |                                                                                                                    |                                                                  |                                                |                                                                                                   |                                                                                              |                                                                                |                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4a   | EU               | Orchard crops<br>(citrus, stone and<br>pome fruits, kiwi,<br>tree nuts, banana,<br>and table olives)                                           | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>shielded<br>spray,<br>band<br>application | Post-emergence of weeds                        | a) 1 – 2<br>(28 days)<br>b) 1 – 2<br>(28 days)                                                    | a) 3 – 4 L/ha<br>b) 8 L/ha                                                                   | a) 1.08 – 1.44 kg as/ha<br>b) 2.88 kg as/ha                                    | 100 - 400                     | 7      | Avoid crop contamination during<br>treatment.<br>Maximum application rate of<br>2.88 kg as/ha treated area glyphosate<br>in any 12 months period.<br>Band application in the rows below<br>the trees or as spot treatments. The<br>treated area represents not more than<br>50 % of the total orchard area. The<br>application rate with reference to the<br>total orchard surface area is not<br>more than 50 % of the stated dose<br>rate. |

| 1    | 2        | 3                                                                                                    | 4                | 5                                                                                                                  | 6                                                                | 7                                            | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|----------|------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                                            | F                | Pests or                                                                                                           | Application                                                      |                                              |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI    | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                                           | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                                 | Timing / Growth<br>stage of crop &<br>season | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | (days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                                                                                |
| 4b   | EU       | Orchard crops<br>(citrus, stone and<br>pome fruits, kiwi,<br>tree nuts, banana,<br>and table olives) | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>shielded<br>spray,<br>band<br>application | Post-emergence of weeds                      | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days))                                                   | a) 2 – 3 L/ha<br>b) 8 L/ha                                                                   | a) 0.72 – 1.08 kg as/ha<br>b) 2.88 kg as/ha                                    | 100 - 400                     | 7      | <ul> <li>Avoid crop contamination during treatment.</li> <li>Maximum application rate of 2.88 kg as/ha treated area glyphosate in any 12 months period.</li> <li>Band application in the rows below the trees or as spot treatments. The treated area represents not more than 50 % of the total orchard area. The application rate with reference to the total orchard surface area is not more than 50 % of the stated dose rate.</li> </ul> |
| 4c   | EU       | Orchard crops<br>(citrus, stone and<br>pome fruits, kiwi,<br>tree nuts, banana,<br>and table olives) | F                | Emerged<br>annual<br>weeds                                                                                         | Ground<br>directed,<br>shielded<br>spray,<br>band<br>application | Post-emergence of<br>weeds                   | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days)                                                    | a) 2 L/ha<br>b) 6 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 2.16 kg as/ha                                           | 100 - 400                     | 7      | <ul> <li>Avoid crop contamination during treatment.</li> <li>Maximum application rate of 2.16 kg as/ha treated area glyphosate in any 12 months period.</li> <li>Band application in the rows below the trees or as spot treatments. The treated area represents not more than 50 % of the total orchard area. The application rate with reference to the total orchard surface area is not more than 50 % of the stated dose rate.</li> </ul> |

| 1    | 2        | 3                                                                                      | 4                | 5                                                                                                                  | 6                                                             | 7                                            | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|----------|----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                              | F                | Pests or                                                                                                           | Application                                                   |                                              |                                                                                                   | Application rat                                                                              | te                                                                             |                               | PHI   | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                             | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                              | Timing / Growth<br>stage of crop &<br>season | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                                                                                                |
| 5a   | EU       | Vines<br>(table and wine<br>grape, leaves not<br>intended for<br>human<br>consumption) | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>shielded<br>spray, band<br>application | Post-emergence of weeds                      | a) 1 – 2<br>(28 days)<br>b) 1 – 2<br>(28 days)                                                    | a) 3 – 4 L/ha<br>b) 8 L/ha                                                                   | a) 1.08 – 1.44 kg as/ha<br>b) 2.88 kg as/ha                                    | 100 - 400                     | 7     | <ul> <li>Avoid crop contamination during treatment.</li> <li>Maximum application rate of 2.88 kg as/ha treated area glyphosate in any 12 months period.</li> <li>Band application in the rows below the vine stock or as spot treatments. The treated area represents not more than 50 % of the total vineyard area. The application rate with reference to the total vineyard surface area is not more than 50 % of the stated dose rate.</li> </ul>          |
| 5b   | EU       | Vines<br>(table and wine<br>grape, leaves not<br>intended for<br>human<br>consumption) | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>shielded<br>spray, band<br>application | Post-emergence of weeds                      | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days)                                                    | a) 2 – 3 L/ha<br>b) 8 L/ha                                                                   | a) 0.72 – 1.08 kg as/ha<br>b) 2.88 kg as/ha                                    | 100 - 400                     | 7     | <ul> <li>Avoid crop contamination during treatment.</li> <li>Maximum application rate of 2.88 kg as/ha treated area glyphosate in any 12 months period.</li> <li>Band application in the rows below the vine stock or as spot treatments. The treated area represents not more than 50 % of the total vineyard area.</li> <li>The application rate with reference to the total vineyard surface area is not more than 50 % of the stated dose rate.</li> </ul> |

| 1    | 2        | 3                                                                                                                                      | 4                | 5                                                                                                                  | 6                                                                     | 7                                            | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                                                                              | F                | Pests or                                                                                                           | Application                                                           | ·                                            | ·                                                                                                 | Application ra                                                                               | te                                                                             |                               | PHI    | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                             | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                                      | Timing / Growth<br>stage of crop &<br>season | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | (days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                                                                                     |
| 5c   | EU       | Vines<br>(table and wine<br>grape, leaves not<br>intended for<br>human<br>consumption)                                                 | F                | Emerged<br>annual<br>weeds                                                                                         | Ground<br>directed,<br>shielded<br>spray, band<br>application         | Post-emergence of weeds                      | a) 1 – 3<br>(28 days)<br>b) 1 – 3<br>(28 days)                                                    | a) 2 L/ha<br>b) 6 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 2.16 kg as/ha                                           | 100 - 400                     | 7      | Avoid crop contamination during<br>treatment.<br>Maximum application rate of<br>2.16 kg as/ha treated area glyphosate<br>in any 12 months period.<br>Band application in the rows below<br>the vine stock or as spot treatments.<br>The treated area represents not more<br>than 50 % of the total vineyard area.<br>The application rate with reference<br>to the total vineyard surface area is<br>not more than 50 % of the stated<br>dose rate. |
| 6a   | EU       | Vegetables (Root<br>and tuber<br>vegetables<br>Bulb vegetables,<br>Fruiting<br>vegetables<br>Legume<br>vegetables<br>Leafy vegetables) | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Inter-row<br>application:<br>ground<br>directed,<br>shielded<br>spray | Crop BBCH < 20                               | a) 1<br>b) 1                                                                                      | a) 3 L/ha<br>b) 3 L/ha                                                                       | a) 1.08 kg as/ha<br>b) 1.08 kg as/ha                                           | 100 - 400                     | 60     | Avoid crop contamination during<br>treatment.<br>Maximum application rate of<br>1.08 kg as/ha glyphosate in any 12<br>months period.<br>Applications are performed between<br>the crop rows. The rate refers to the<br>treated area only, which represents<br>not more than 50 % of the total area.<br>The application rate with reference<br>to the total surface area is not more<br>than 50 % of the stated dose rate                            |

| 1    | 2        | 3                                                                                                                                      | 4                | 5                                                                                                                  | 6                                                                     | 7                                            | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13    | 14                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                                                                              | F                | Pests or                                                                                                           | Application                                                           |                                              |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI   | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                             | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                                      | Timing / Growth<br>stage of crop &<br>season | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                                                                                                                                                                               |
| 6b   | EU       | Vegetables (Root<br>and tuber<br>vegetables<br>Bulb vegetables,<br>Fruiting<br>vegetables<br>Legume<br>vegetables<br>Leafy vegetables) | F                | Emerged<br>annual<br>weeds                                                                                         | Inter-row<br>application:<br>ground<br>directed,<br>shielded<br>spray | Crop BBCH < 20                               | a) 1<br>b) 1                                                                                      | a) 2 L/ha<br>b) 2 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 0.72 kg as/ha                                           | 100 - 400                     | 60    | <ul> <li>Avoid crop contamination during treatment.</li> <li>Maximum application rate of 0.72 kg as/ha glyphosate in any 12 months period.</li> <li>Applications are performed between the crop rows. The rate refers to the treated area only, which represents not more than 50 % of the total area. The application rate with reference to the total surface area is not more than 50 % of the stated dose rate</li> </ul> |
| 7a   | EU       | Railroad tracks                                                                                                                        | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>spray                                          | Post-emergence of weeds                      | a) 2 (90 days)<br>b) 2 (90 days)                                                                  | a) 5 L/ha<br>b) 10 L/ha                                                                      | a) 1.8 kg as/ha<br>b) 3.6 kg as/ha                                             | 100 - 400                     | N/A   | Application by spray train<br>Maximum application rate of<br>3.6 kg as/ha glyphosate in any 12<br>months period.                                                                                                                                                                                                                                                                                                              |
| 7b   | EU       | Railroad tracks                                                                                                                        | F                | Emerged<br>annual,<br>biennial<br>and<br>perennial<br>weeds                                                        | Ground<br>directed,<br>spray                                          | Post-emergence of weeds                      | a) 1<br>b) 1                                                                                      | a) 5 L/ha<br>b) 5 L/ha                                                                       | a) 1.8 kg as/ha<br>b) 1.8 kg as/ha                                             | 100 - 400                     | N/A   | Application by spray train<br>Maximum application rate of<br>1.8 kg as/ha glyphosate in any 12<br>months period.                                                                                                                                                                                                                                                                                                              |
| 8    | EU       | Invasive species<br>in agricultural and<br>non-agricultural<br>areas                                                                   | F                | Giant<br>hogweed<br>(Heracleu<br>m<br>mantegazzi<br>anum)                                                          | Spot<br>treatment<br>(shielded)                                       | Post-emergence of invasive species           | a) 1<br>b) 1                                                                                      | a) 5 L/ha<br>b) 5 L/ha                                                                       | a) 1.8 kg as/ha<br>b) 1.8 kg as/ha                                             | 5-400                         | N/A   | Maximum application rate of 1.8 kg as/ha glyphosate in any 12 months period.                                                                                                                                                                                                                                                                                                                                                  |

| 1    | 2        | 3                                                                                                                                              | 4                | 5                                                                                                                  | 6                                                                     | 7                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13    | 14                                                                                                                                                                                                                                                |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                                                                                      | F                | Pests or                                                                                                           | Application                                                           |                                                |                                                                                                   | Application ra                                                                               | te                                                                             |                               | PHI   | Remarks:                                                                                                                                                                                                                                          |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                                     | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                                                      | Timing / Growth<br>stage of crop &<br>season   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                   |
| 9    | EU       | Invasive species<br>in agricultural and<br>non-agricultural<br>areas                                                                           | F                | Japanese<br>knotweed<br>( <i>Reynoutri</i><br>a<br>japonica)                                                       | Spot<br>treatment<br>(shielded),<br>cut stem:<br>spray<br>application | Late summer, early fall                        | a) 1<br>b) 1                                                                                      | a) 5 L/ha<br>b) 5 L/ha                                                                       | a) 1.8 kg as/ha<br>b) 1.8 kg as/ha                                             | 5-400                         | N/A   | Maximum application rate of 1.8 kg as/ha glyphosate in any 12 months period.                                                                                                                                                                      |
| 10a  | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Couch<br>grass<br>(Elymus<br>repens)                                                                               | Spot<br>treatment<br>(shielded)                                       | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1<br>b) 1                                                                                      | a) 3 L/ha<br>b) 3 L/ha                                                                       | a) 1.08 kg as/ha<br>b) 1.08 kg as/ha                                           | 100 - 400                     | N/A   | Application to existing row cropland<br>after harvest for removal of couch<br>grass.<br>Maximum application rate of<br>1.08 kg as/ha glyphosate in any 12<br>months period.<br>The treated area represents not more<br>than 20 % of the cropland. |
| 10ь  | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Couch<br>grass<br>(Elymus<br>repens)                                                                               | Spot<br>treatment<br>(shielded)                                       | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1<br>b) 1                                                                                      | a) 2 L/ha<br>b) 2 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 0.72 kg as/ha                                           | 100 - 400                     | N/A   | Application to existing row cropland<br>after harvest for removal of couch<br>grass.<br>Maximum application rate of<br>0.72 kg as/ha glyphosate in any 12<br>months period.<br>The treated area represents not more<br>than 20 % of the cropland. |

| 1    | 2        | 3                                                                                                                                              | 4                | 5                                                                                                                  | 6                               | 7                                              | 8                                                                                                 | 10                                                                                           | 11                                                                             | 12                            | 13    | 14                                                                                                                                                                                                                                                                       |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use- | Member   | Crop and/                                                                                                                                      | F                | Pests or                                                                                                           | Application                     |                                                |                                                                                                   | Application rat                                                                              | te                                                                             |                               | PHI   | Remarks:                                                                                                                                                                                                                                                                 |
| No.  | state(s) | or situation<br>(crop destination<br>/ purpose of<br>crop)                                                                                     | G<br>o<br>r<br>I | Group of<br>pests<br>controlled<br>(additionall<br>y:<br>developmen<br>tal stages of<br>the pest or<br>pest group) | Method /<br>Kind                | Timing / Growth<br>stage of crop &<br>season   | Max. number<br>(min. interval<br>between<br>applications)<br>a) per use<br>b) per crop/<br>season | kg, L<br>product/ha<br>a) max. rate<br>per appl.<br>b) max. total<br>rate per<br>crop/season | g, kg as/ha<br>a) max. rate per appl.<br>b) max. total rate per<br>crop/season | Water<br>L/ha<br>min /<br>max | days) | e.g. safener/synergist per ha<br>e.g. recommended or mandatory<br>tank mixtures                                                                                                                                                                                          |
| 10c  | EU       | Root & tuber<br>vegetables,<br>Bulb vegetables,<br>Fruiting<br>vegetables,<br>Brassica,<br>Leafy vegetables,<br>Stem vegetables,<br>Sugar beet | F                | Couch<br>grass<br>(Elymus<br>repens)                                                                               | Spot<br>treatment<br>(shielded) | Post-harvest, pre-<br>sowing, pre-<br>planting | a) 1<br>b) 1                                                                                      | a) 2 L/ha<br>b) 2 L/ha                                                                       | a) 0.72 kg as/ha<br>b) 0.72 kg as/ha                                           | 100 - 400                     | N/A   | Application to existing row cropland<br>after harvest for removal of couch<br>grass once every three years.<br>Maximum application rate of<br>0.72 kg as/ha glyphosate in any 36<br>months period.<br>The treated area represents not more<br>than 20 % of the cropland. |

**Remarks** (a) e g wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

table (b) Catalogue of pesticide formulation types and international coding system CropLife

heading: International Technical Monograph n°2, 6th Edition Revised May 2008

(c) g/kg or g/l

#### Remarks 1 Numeration necessary to allow references

columns: 2 Use official codes/nomenclatures of EU Member States

- 3 For crops, the EU and Codex classifications (both) should be used; when relevant, the use situation should be described (e g fumigation of a structure)
- 4 F: professional field use, Fn: non-professional field use, Fpn: professional and non-professional field use, G: professional greenhouse use, Gn: non-professional greenhouse use, Gpn: professional and non-professional greenhouse use, I: indoor application
- 5 Scientific names and EPPO-Codes of target pests/diseases/ weeds or, when relevant, the common names of the pest groups (e g biting and sucking insects, soil born insects, foliar fungi, weeds) and the developmental stages of the pests and pest groups at the moment of application must be named
- 6 Method, e g high volume spraying, low volume spraying, spreading, dusting, drench Kind, e g overall, broadcast, aerial spraying, row, individual plant, between the plants - type of equipment used must be indicated

- (d) Select relevant
- (e) Use number(s) in accordance with the list of all intended GAPs in Part B, Section 0 should be given in column 1
- (f) No authorization possible for uses where the line is highlighted in grey, Use should be crossed out when the notifier no longer supports this use
- 7 Growth stage at first and last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- 8 The maximum number of application possible under practical conditions of use must be provided
- 9 Minimum interval (in days) between applications of the same product
- 10 For specific uses other specifications might be possible, e g : g/m<sup>3</sup> in case of fumigation of empty rooms See also EPPO-Guideline PP 1/239 Dose expression for plant protection products
- 11 The dimension (g, kg) must be clearly specified (Maximum) dose of a s per treatment (usually g, kg or L product / ha)
- 12 If water volume range depends on application equipments (e g ULVA or LVA) it should be mentioned under "application: method/kind"
- 13 PHI minimum pre-harvest interval
- 14 Remarks may include: Extent of use/economic importance/restrictions

Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment Regulation (EC) N° 1107/2009 Article 8.1(g))

Not applicable. Only an MRL for honey is applied for. This is not regarded an additional intended use.

## **Further information, Efficacy**

## Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

In terms of efficacy, the representative uses GAPs are supported

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

In terms of adverse effects on field crops, the representative uses GAPs are supported

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

In terms of adverse effects on succeeding or adjacent crops, the representative uses GAPs are supported

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

AMPA

No

## **Methods of Analysis**

## Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)

Impurities in technical a.s. (analytical technique)

Plant protection product (analytical technique)

HPLC-UV; HPLC-PDA

HPLC-UV; LC-MS/MS; IC-UV; HPLCcolorimeter; Karl-Fisher

HPLC-UV

## Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

#### **Residue definitions for monitoring purposes**

| Food of plant origin                                                               | Non-tolerant crops: glyphosate                                                               |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                    | Tolerant crops: sum of glyphosate, AMPA and N-<br>acetyl-glyphosate, expressed as glyphosate |
| Food of animal origin                                                              | Sum of glyphosate, AMPA and N-acetyl-<br>glyphosate, expressed as glyphosate                 |
| Soil                                                                               | glyphosate and AMPA                                                                          |
| Sediment                                                                           | glyphosate and AMPA                                                                          |
| Water surface                                                                      | glyphosate and AMPA                                                                          |
| drinking/ground                                                                    | glyphosate and AMPA                                                                          |
| Air                                                                                | glyphosate                                                                                   |
| Body fluids and tissues                                                            | Fluids: Glyphosate and AMPA                                                                  |
|                                                                                    | Tissues: Sum of glyphosate, AMPA and N-acetyl-<br>glyphosate, expressed as glyphosate        |
| Monitoring/Enforcement methods                                                     |                                                                                              |
| Food/feed of plant origin (analytical technique and LOQ for methods for monitoring | LC-MS/MS<br>LOQ 0.05 mg/kg for glyphosate and AMPA                                           |
| purposes)                                                                          | LOQ 0.025 mg/kg for <i>N</i> -acetylglyphosate                                               |
|                                                                                    | Extraction efficiency-pending                                                                |
| Food/feed of animal origin (analytical                                             | LC-MS/MS                                                                                     |
| technique and LOQ for methods for monitoring purposes)                             | LOQ 0.025 mg/kg for glyphosate, AMPA and <i>N</i> -acetylglyphosate                          |
|                                                                                    | Extraction efficiency-pending                                                                |
| Honey (analytical technique and LOQ for                                            | LC-MS/MS                                                                                     |
| methods for monitoring purposes)                                                   | LOQ 0.025 mg/kg for glyphosate, and AMPA<br>Extraction efficiency-pending                    |
| Soil (analytical technique and LOQ)                                                | LC-MS/MS                                                                                     |

LC-MS/MS LOQ 0.05 mg/kg for glyphosate and AMPA

| Water (analytical technique and LOQ)                   | LC-MS/MS<br>LOQ 0.03 µg/L for glyphosate and AMPA         |
|--------------------------------------------------------|-----------------------------------------------------------|
| Air (analytical technique and LOQ)                     | GC-MS<br>LOQ 5 µg/m <sup>3</sup> for glyphosate           |
| Body fluids and tissues (analytical technique and LOQ) | Fluids: LC-MS/MS<br>LOQ 0.01 mg/L for glyphosate and AMPA |

## Classification and labelling with regard to physical and chemical data (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, point 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]<sup>1</sup>:

Peer review proposal <sup>2</sup> for harmonised classification according to Regulation (EC) No 1272/2008:

| is real and chemical data (Regulation (EU) $N^{\circ}$                     |  |
|----------------------------------------------------------------------------|--|
| Glyphosate                                                                 |  |
| No classification linked to physical and chemical properties of glyphosate |  |
| None                                                                       |  |

<sup>&</sup>lt;sup>1</sup> Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

<sup>&</sup>lt;sup>2</sup> It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

## Impact on Human and Animal Health

| 205/2015, Annex Part A, point 5.1)                          |                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rate and extent of oral absorption/systemic bioavailability | 20% (based on various studies in rats, dose levels<br>ranging between 1-1000 mg/kg bw)<br>Absorption independent of dose and sex.                                                                                                                                                                                                                                                 |
| Toxicokinetics                                              | Glyphosate:<br>Cmax in plasma: 0.64-0.84 μg/ml at 72 mg/kg<br>bw/day and 4.69-5.31 μg/ml at 385 mg/kg bw/day<br>Tmax: 0.5 hour at 72 and 385 mg/kg bw/day; other<br>studies 2-8 hours<br>Plasma T1/2: 11 hours at 72 mg/kg bw/day and 13<br>hours at 385 mg/kg bw/day; other studies 6-12 h<br>AUC: 8.3-10.4 μg/ml at 72 mg/kg bw/day and 44.7-<br>57.0 μg/ml at 385 mg/kg bw/day |
| Distribution                                                | AMPA (after 14-day repeated administration of 385<br>mg/kg bw/d of glyphosate):<br>Cmax in plasma: 0.038-0.041 μg/ml<br>Tmax: 0.5 hour<br>Plasma T1/2: 7.0-7.5 hours<br>AUC: 0.245-0.276 μg/ml<br>Widely distributed (bone, kidney, to lesser extent in                                                                                                                           |
|                                                             | liver)                                                                                                                                                                                                                                                                                                                                                                            |
| Potential for bioaccumulation                               | No evidence for accumulation                                                                                                                                                                                                                                                                                                                                                      |
| Rate and extent of excretion                                | Rapid and extensive (app. 90 % within 24 h),<br>mainly via faeces (~ 20% in urine, remaining via<br>faeces). Biliary excretion and exhalation negligible.                                                                                                                                                                                                                         |
| Metabolism in animals                                       | Very limited metabolism with only<br>biotransformation to AMPA accounting for up to<br>0.6% of the total excreted amount.                                                                                                                                                                                                                                                         |
| In vitro metabolism                                         | Poorly metabolized (97% unmetabolized glyphosate). No unique human metabolite detected.                                                                                                                                                                                                                                                                                           |
| Toxicologically relevant compounds (animals and plants)     | Glyphosate                                                                                                                                                                                                                                                                                                                                                                        |
| Toxicologically relevant compounds (environment)            | Glyphosate                                                                                                                                                                                                                                                                                                                                                                        |

## Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, point 5.1)

## Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

| Rat LD <sub>50</sub> oral       | > 2000 mg/kg bw |  |
|---------------------------------|-----------------|--|
| Rat LD <sub>50</sub> dermal     | > 2000 mg/kg bw |  |
| Rat LC <sub>50</sub> inhalation | > 5 mg/L        |  |

| Skin irritation    | Non-irritating to skin                                                                    |                 |
|--------------------|-------------------------------------------------------------------------------------------|-----------------|
| Eye irritation     | Serious eye damage                                                                        | Cat. 1,<br>H318 |
| Skin sensitisation | Negative (M&K test, LLNA, Buehler)<br>(glyphosate acid)<br>Negative (M&K test) (IPA salt) |                 |
| Phototoxicity      | Not required                                                                              |                 |

## Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

| Target organ / critical effect | Rat: soft stool, diarrhoea, reduction in<br>body weight gain and food consumption,<br>liver effects (increased weight, changes in<br>blood chemistry), caecum (distention and<br>increased weight), salivary gland (cellular<br>alterations) |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                | Mice: reduction in body weight gain and<br>food consumption, liver effects (changes<br>in blood chemistry), caecum (distension),<br>increased incidence of cystitis in the<br>urinary bladder (high dose males only)                         |  |
|                                | Dog: loose stool, reduction in body<br>weight gain and food consumption, liver<br>(changes in blood chemistry), kidney<br>(increased weight)                                                                                                 |  |
| Relevant oral NOAEL            | 90-day, rat: 30 mg/kg bw per day<br>90-day, mice: 600 mg/kg bw per day<br>( <i>provisional</i> )<br>90-day, dog: 68 mg/kg bw per day                                                                                                         |  |
| Relevant dermal NOAEL          | 21-day, rat: 1000 mg/kg bw per day<br>(systemic), LOAEL for local effects of<br>1000 mg/kg bw/day (mild skin irritation;<br>observed at the only dose tested),<br>28-day, rabbit: 2000 mg/kg bw per day                                      |  |
|                                | (systemic); 1000 mg/kg bw per day (local effects)                                                                                                                                                                                            |  |
| Relevant inhalation NOAEL      | No data - not required                                                                                                                                                                                                                       |  |

## Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

| In vitro studies | In vitro bacterial gene mutation assays                |
|------------------|--------------------------------------------------------|
|                  | Negative                                               |
|                  |                                                        |
|                  | <i>In vitro</i> gene mutation assay in mammalian cells |
|                  | Negative                                               |
|                  |                                                        |

|                            | <i>In vitro</i> clastogenicity and aneugenicity<br>assay<br>Negative                                                                                                                                     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <i>In vitro</i> studies from public literature<br>Negative and positive outcomes.<br>However, due to methodological<br>shortcomings, the toxicological relevance<br>of the reported findings is unclear. |
| In vivo studies            | In vivo studies in somatic cells                                                                                                                                                                         |
|                            | Overall negative                                                                                                                                                                                         |
|                            | <i>In vivo</i> studies from public literature<br>Negative and positive outcomes.<br>However, due to methodological<br>shortcomings, the toxicological relevance<br>of the reported findings is unclear.  |
|                            | Human data                                                                                                                                                                                               |
|                            | Although not completely negative, the<br>available studies do not provide<br>sufficiently robust evidence of glyphosate<br>genotoxicity in humans.                                                       |
| Photomutagenicity          | Not required                                                                                                                                                                                             |
| Potential for genotoxicity | Preliminary conclusion: not genotoxic                                                                                                                                                                    |

## Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

| Long-term effects (target organ/critical effect) | Rat: liver (increased ALP and weight),<br>salivary gland (increased weight and<br>cellular alterations), stomach<br>(inflammation and hyperplasia of<br>squamous mucosa), caecum (distention<br>and increased weight), eye (cataracts)<br>Mouse: Reduced body weight, heart<br>(degenerative changes), liver (hepatocyte<br>hypertrophy and necrosis), kidney<br>(chronic interstitial nephritis) |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relevant long-term NOAEL                         | 2-year, rat: 10 mg/kg bw per day<br>18-month, mouse: 150 mg/kg bw per day<br>(overall NOAEL)                                                                                                                                                                                                                                                                                                      |
| Carcinogenicity (target organ, tumour type)      | Not carcinogenic in rats and mice;<br>Overall inconclusive for a causal or clear<br>associative relationship between<br>glyphosate and cancer in human studies;<br>classification and labelling not required                                                                                                                                                                                      |
| Relevant NOAEL for carcinogenicity               | n.a.                                                                                                                                                                                                                                                                                                                                                                                              |

# Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6) Reproduction toxicity

| Reproduction target / critical effect | <u>Adult:</u> gastrointestinal disturbances (soft<br>stool, distension of caecum), reduced bw,<br>organ weight changes (increased liver<br>and kidney weights), effects on salivary<br>gland (histopathological changes)<br><u>Reproduction and fertility:</u> reduced<br>homogenisation resistant spermatids (in<br><i>Cauda epididymidis</i> ) in F0 males at limit<br>dose (1000 mg/kg bw/day) but no<br>evidence for impairment of fertility and<br>reproductive performance, lower fertility<br>indices in F1 females at high dose level<br>(above 2000 mg/kg bw/day) (one study)<br><u>Offspring:</u> reduced bw, delayed preputial<br>separation in F1 generation at limit dose<br>(1000 mg/kg bw/day) (one study),<br>distension of caecum at high dose level<br>(above 2000 mg/kg bw/day) (one study) |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relevant parental NOAEL               | 66 mg/kg bw per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Relevant reproductive NOAEL           | 351 mg/kg bw per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relevant offspring NOAEL              | 293 mg/kg bw per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## **Developmental toxicity**

| Developmental target / critical effect | Rat:                                                                |  |
|----------------------------------------|---------------------------------------------------------------------|--|
|                                        | Maternal toxicity: loose faeces in 20/22<br>dams                    |  |
|                                        | Developmental toxicity: skeletal<br>variations at 1000 mg/kg bw/d   |  |
|                                        | Rabbit:                                                             |  |
|                                        | Maternal toxicity: reduced body weight gain (24-29%, not stat sign) |  |
|                                        | Developmental toxicity:                                             |  |
|                                        | increased post-implantation loss                                    |  |
|                                        | (21% compared to 5.7% in controls)                                  |  |
|                                        | Cardiac malformations                                               |  |
|                                        | (11 foetuses compared to 2 in controls)                             |  |
| Relevant maternal NOAEL                | Rat: 300 mg/kg bw per day<br>Rabbit: 50 mg/kg bw per day            |  |
| Relevant developmental NOAEL           | Rat: 300 mg/kg bw per day<br>Rabbit: 150 mg/kg bw per day           |  |

Г

## Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

| Acute neurotoxicity                                                          | No sign of neurotoxicity<br>Critical effect: mortality, clinical signs                    |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                              | NOAEL systemic toxicity = 1000 mg/kg<br>bw                                                |
| Repeated neurotoxicity                                                       | No sign of neurotoxicity<br>Critical effect: reduced body weight and<br>food consumption  |
|                                                                              | NOAEL systemic toxicity = 395 mg/kg<br>bw/day                                             |
| Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity) | Acute delayed neurotoxicity:<br>No adverse effects up to highest dose of<br>2000 mg/kg bw |

## Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

<u>Immunotoxicity:</u> No indication of immunotoxic potential. NOAEL = 1448 mg/kg bw/day, the highest dose tested. Endocrine disrupting properties

Level 1 studies: QSAR analysis: Negative

Level 2 guideline in vitro studies:

*In vitro* AR binding assay: Negative *In vitro* ER transactivation assay: Negative, but study not reliable.

In vitro ER binding assay: Negative

In vitro aromatase inhibition assay: Negative

In vitro steroidogenesis: Negative

Level 2 non-guideline in vitro studies:

- Glyphosate decreased cell proliferation, cell viability, oestrogen production and ferric reducing capacity and increased progesterone and NO production in granulosa cells. Glyphosate significantly decreased the viability of adipose stromal cells and inhibited their adipogenic differentiation (only single concentration tested).

- No effect on Sertoli cell viability, but an increase in cytoplasmic lipid droplets was observed at very high concentrations.

- Activation of ER $\alpha$  but only at very high concentrations.

- No effect on ER $\beta$ .

- Inhibition of aromatase activity but only at very high concentrations.

Level 3 studies:

Uterotrophic assay: Negative

Hershberger assay: Negative

Male pubertal assay: Negative

Female pubertal assay: Equivocal due to decrease in females regularly cycling (based on limited number of animals) and non-significant increase in age at first oestrus.

| $\frac{AMPA}{Oral I D} > 5000 \text{ mg/kg hyy/day}$                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oral $LD_{50} > 5000 \text{ mg/kg bw/day}$                                                                                                                                                                      |
| Dermal $LD_{50} > 2000 \text{ mg/kg bw/day}$                                                                                                                                                                    |
| AMPA did not show a sensitising potential.                                                                                                                                                                      |
| Negative in <i>in vitro</i> bacterial gene mutation assay,<br>negative in <i>in vitro</i> mammalian gene mutation<br>assay, negative in <i>in vitro and in vivo</i> micronucleus<br>assay.                      |
| 28-day rat (NOAEL): 100 mg/kg bw/day based on decreased body weight and increased kidney weight at 350 mg/kg bw/day.                                                                                            |
| 90-day rat:                                                                                                                                                                                                     |
| First study: NOAEL $\geq$ 1000 mg/kg bw/day based<br>on no adverse effects at the highest dose tested.                                                                                                          |
| Second study: NOAEL of 400 mg/kg bw/day based<br>on increased urothelial hyperplasia of the urinary<br>bladder at 1200 mg/kg bw/day.                                                                            |
| 90-day dog (NOAEL): $\geq$ 263 mg/kg bw/day based<br>on no adverse effects at the highest dose tested                                                                                                           |
| Rat developmental toxicity                                                                                                                                                                                      |
| First study:                                                                                                                                                                                                    |
| Maternal and developmental NOAEL: 1000 mg/kg bw/day, the highest dose tested                                                                                                                                    |
| Second study:                                                                                                                                                                                                   |
| Maternal NOAEL: 150 mg/kg bw/day based on<br>increased mucoid faeces, soft stool and hair loss at<br>400 mg/kg bw/day and above and decreased body<br>weight gain and food consumption at 1000 mg/kg<br>bw/day. |
| Developmental NOAEL: 400 mg/kg bw/day based<br>on a reduction in foetal weight at 1000 mg/kg<br>bw/day.                                                                                                         |
| It is concluded that AMPA is of similar toxicity as glyphosate and its reference values can be applied.                                                                                                         |
|                                                                                                                                                                                                                 |

<u>N-acetyl AMPA</u> Oral LD<sub>50</sub> > 5000 mg/kg bw/day

Negative bacterial gene mutation study, negative *in vitro* chromosomal aberration study, negative *in vitro* mammalian genotoxicity study and a negative *in vivo* micronucleus study. However, as bone marrow exposure is not proven in the latter study, aneugenicity was not sufficiently addressed and therefore no conclusion can be drawn on genotoxicity.

90-day rat (NOAEL): 374 and 455 mg/kg bw/day in males and females, respectively. Based on abnormal excreta in both sexes and decreased body weight gain in males at 1163 and 1400 mg/kg bw/day in males and females, respectively.

Due to the data gap concerning genotoxicity, no conclusion is made regarding reference values.

 $\frac{N\text{-}acetyl glyphosate}{\text{Oral } LD_{50} > 5000 \text{ mg/kg bw/day}}$ 

Negative bacterial gene mutation study, negative *in vitro* chromosome aberration study, negative *in vitro* mammalian gene mutation study and a negative *in vivo* micronucleus study. However, as bone marrow exposure is not proven in the latter study, aneugenicity was not sufficiently addressed and therefore no conclusion can be drawn on genotoxicity.

90-day rat (NOAEL): 283 mg/kg bw/day based on decreased body weight gain in males at 1157 mg/kg bw/day.

Due to the data gap concerning genotoxicity, no conclusion is made regarding reference values.

## Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No critical health effects reported from occupational health surveillance; no convincing evidence of carcinogenicity, neurotoxicity or effects on fertility and development in epidemiological studies; poisoning incidents after accidental or voluntary (suicidal) oral intake of large amounts of glyphosate-based herbicides; transient eye irritation as most frequent sign in operators following accidental exposure.

| Summary <sup>3</sup> (Regulation (EU) N°1107/2009,<br>Annex II, point 3.1 and 3.6) | Value<br>(mg/kg bw (per<br>day)) | Study                                         | Uncertainty<br>factor                            |
|------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------|
| Acceptable Daily Intake (ADI)                                                      | 0.1                              | 2-year rat study                              | 100                                              |
| Acute Reference Dose (ARfD)                                                        | 1.5                              | Developmental<br>toxicity study in<br>rabbits | 100                                              |
| Acceptable Operator Exposure Level (AOEL)                                          | 0.03                             | 90-day rat study                              | 2 (for LOAEL) x 100 x 5 (correcti on OA) =       |
|                                                                                    |                                  |                                               | 1000*                                            |
| Acute Acceptable Operator Exposure Level (AAOEL)                                   | 0.3                              | Developmental<br>toxicity study in<br>rabbits | 100 x 5<br>(correc-<br>tion for<br>OA) =<br>500* |

\* Including correction for limited oral absorption/bioavailability (20%).

### Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

| Representative formulation (MON 52276, SL | Concentrate: 0.096%                      |
|-------------------------------------------|------------------------------------------|
|                                           | Spray dilution 1:12.5 (28.8 g/L): 0.23%  |
|                                           | Spray dilution 1:150 (2.4 g/L): 0.68%    |
|                                           | In vitro human study with representative |
|                                           | formulation.                             |

## Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

<u>Use:</u> **Pre-emergence of crops** (bare soil), tractor mounted equipment, application rate 1.44 kg a.s./ha Exposure estimates: % of AOEL <u>EFSA model:</u>

<sup>&</sup>lt;sup>3</sup> If available include also reference values for metabolites

Without PPE: 12.7 % Exposure estimates: % of AAOEL EFSA model: Without PPE: 5.22 %

<u>Use:</u> **Vegetables** (including root & tuber vegetables, bulb vegetables, fruiting vegetables, brassica, leafy vegetables, stem vegetables, sugar beet), tractor mounted equipment, application

### rate 1.44 kg a.s./ha

Exposure estimates: % of AOEL

EFSA model:

Without PPE: 12.6 %

Exposure estimates: % of AAOEL

EFSA model:

Without PPE: 5.22 %

rate 2 x 1.08 kg a.s./ha

Exposure estimates: % of AOEL

EFSA model:

Without PPE: 10.0 %

Exposure estimates: % of AAOEL

EFSA model:

Without PPE: 4.22 %

<u>Use:</u> **Orchard crops** (including stone and pome fruits, kiwi, tree nuts, banana, and table olives, citrus) and **vines, vehicle-mounted** equipment, application rate  $2 \times 1.44 \text{ kg a.s./ha}$ 

Exposure estimates: % of AOEL

EFSA model:

Without PPE: 12.7%

Exposure estimates: % of AAOEL

EFSA model:

Without PPE: 3.10 %

<u>Use:</u> **Orchard crops** (including stone and pome fruits, kiwi, tree nuts, banana, and table olives, citrus) and **vines, manual hand-held** equipment, application rate 2 x 1.44 kg a.s./ha

Exposure estimates: % of AOEL

EFSA model:

Without PPE: 22.1%

Exposure estimates: % of AAOEL

EFSA model:

Without PPE: 10.81 %

<u>Use:</u> **Orchard crops** (including stone and pome fruits, kiwi, tree nuts, banana, and table olives, citrus) and **vines, manual knapsack**, application

Workers

| rate 2 x 1.44 kg a.s./ha                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure estimates: % of AOEL                                                                                                                   |
| EFSA model:                                                                                                                                     |
| Without PPE: 7.3 %                                                                                                                              |
| Exposure estimates: % of AAOEL                                                                                                                  |
| EFSA model:                                                                                                                                     |
| Without PPE: 2.95 %                                                                                                                             |
| Use: Railroad tracks (bare soil), application by                                                                                                |
| spray train,                                                                                                                                    |
| application rate 2 x 1.8 kg a.s./ha                                                                                                             |
| Exposure estimates: % of AOEL                                                                                                                   |
| EFSA model:                                                                                                                                     |
| Without PPE: 15.2 %                                                                                                                             |
| Exposure estimates: % of AAOEL                                                                                                                  |
| EFSA model:                                                                                                                                     |
| Without PPE: 6.15 %                                                                                                                             |
| <u>Use:</u> <b>Invasive species in agricultural and non-</b><br><b>agricultural areas</b> , manual knapsack, application<br>rate 1.8 kg a.s./ha |
| Exposure estimates: % of AOEL                                                                                                                   |
| EFSA model:                                                                                                                                     |
| Without PPE: 8.8 %                                                                                                                              |
| Exposure estimates: % of AAOEL                                                                                                                  |
| EFSA model:                                                                                                                                     |
| Without PPE: 3.54 %                                                                                                                             |

<u>Use:</u> **Pre-emergence of crops** (bare soil) Not relevant since re-entry is not considered necessary shortly after spraying.

<u>Use:</u> Vegetables rate 1.44 kg a.s./ha <u>EFSA model:</u> Without PPE: 32.64 %

<u>Use:</u> Vegetables rate 2 x 1.08 kg a.s./ha EFSA model:

Without PPE: 37.30 %

<u>Use:</u> Orchard crops <u>EFSA model:</u> Hand harvesting scenario, without PPE: 89.5 % Inspection 8 h scenario, without PPE: 27.84 % <u>Use:</u> Vines

EFSA model:

Hand harvesting scenario, without PPE: 200.9 Inspection 8 h scenario, without PPE: 27.84 %

| U  | se: Railroad tracks                             |
|----|-------------------------------------------------|
| N  | ot relevant since re-entry is not considered    |
| ne | ecessary shortly after spraying.                |
| U  | se: Invasive species in non-agricultural areas  |
| E  | FSA model:                                      |
| W  | 7 ithout PPE: 40.8 %                            |
| U  | se: Invasive species in agricultural areas      |
|    | FSA model:                                      |
| W  | 7 ithout PPE: 5.71%                             |
| U  | se: Pre-emergence of crops                      |
|    | FSA model:                                      |
| R  | esident: 4.44 % and 14.51 % for adult and child |
| re | spectively                                      |
| B  | ystander: 0.58 % for adult (spray drift)        |
| U  | se: Vegetables rate 1.44 kg a.s./ha             |
| E  | FSA model:                                      |
| R  | esident: 4.44 % and 14.51 % for adult and child |
| re | spectively                                      |
| B  | ystander: 0.58 % for adult (spray drift)        |
| U  | <u>se:</u> Vegetables 2 x 1.08 kg a.s./ha       |
| E  | FSA model:                                      |
|    | esident: 4.54 % and 13.86 % for adult and child |
|    | spectively                                      |
| B  | ystander: 0.43 % for adult (spray drift)        |
| U  | se: Orchard crops                               |
| E  | FSA model:                                      |
|    | esident: 6.70 % and 22.36 % for adult and child |
|    | spectively                                      |
| B  | ystander: 0.58 % for adult (spray drift)        |
| U  | se: Vines                                       |
| E  | FSA model:                                      |
| R  | esident: 5.87 % and 17.68 % for adult and child |
|    | spectively                                      |
| B  | ystander: 0.58 % for adult (spray drift)        |
| U  | se: Railroad tracks                             |
| E  | FSA model:                                      |
| R  | esident: 5.76 % and 18.08 % for adult and child |
| re | spectively                                      |
| B  | ystander: 0.72 % for adult (spray drift)        |

Bystanders and residents

Use: Invasive species in non-agricultural areas (golf course, turf or other sports lawns) EFSA model: Resident: 28.28 % and 146.88 % for adult and child respectively Recreational: 4.96 % and 28.01 % for adult and child respectively Bystander: 14.49 % for adult (spray drift) Use: Invasive species in agricultural areas EFSA model: Resident: 30.71% and 151.05% for adult and child respectively Bystander: 14.49 % for adult (spray drift)

# Classification with regard to toxicological data (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, Section 10)

| Substance :                                                                                                                                                                                             | glyphosate                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Harmonised classification according to Regulation<br>(EC) No 1272/2008 and its Adaptations to<br>Technical Process [Table 3.1 of Annex VI of<br>Regulation (EC) No 1272/2008 as amended] <sup>4</sup> : | Danger<br>GHS05 (corrosion)<br>Eye Damage 1 H318 - Causes serious eye damage |
| Peer review proposal <sup>5</sup> for harmonised classification according to Regulation (EC) No 1272/2008:                                                                                              | Danger<br>GHS05 (corrosion)<br>Eye Damage 1 H318 - Causes serious eye damage |

<sup>&</sup>lt;sup>4</sup> Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

<sup>&</sup>lt;sup>5</sup> It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

## Residues in or on treated products food and feed

## Metabolism studies, methods of analysis and residue definitions in plants

| <b>Primary crops</b><br>(available<br>studies) | Crop groups | Crop(s)                            | Application(s)                                                                                                                                                                       | Sampling (DAT)                                                                                                                        | Comment/Source            |
|------------------------------------------------|-------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Conventional                                   | Fruit crops | Citrus                             | Soil application at 2.24 kg/ha                                                                                                                                                       | 4 months (119)                                                                                                                        | Glyphosate or AMPA        |
| crops                                          |             | (calamondin<br>citrus); supportive | Hydroponic treatment at 10 mg/kg hydroponic solution                                                                                                                                 | 7, 14                                                                                                                                 | Glyphosate or AMPA        |
|                                                |             | only                               | Foliar application, dropping on leaves, 4 mg                                                                                                                                         | 7, 14, 21, 28, 42, 56                                                                                                                 | Glyphosate                |
|                                                |             | Citrus (lemon)                     | Soil application at 3.9 kg/ha (expressed in glyphosate equiv.)                                                                                                                       | 3, 2 months, 4 months                                                                                                                 | Glyphosate trimesium salt |
|                                                |             | Tree nuts (walnut, almond, and     | Soil application at 5.07 kg/ha for pecan and walnut, and at 2.43 kg/ha for almonds                                                                                                   | 113                                                                                                                                   | Glyphosate                |
|                                                |             | pecan);<br>supportive only         | Foliar application at 100 $\mu$ g per leaf surface                                                                                                                                   | 14 (walnut), 35 (walnut, almond, and pecan)                                                                                           | Glyphosate                |
|                                                |             | Apple; supportive only             | Soil application at 3.36 kg/ha<br>or AMPA at 1.68 kg/ha                                                                                                                              | 42, 84                                                                                                                                | Glyphosate or AMPA        |
|                                                |             |                                    | Trunk application at 92.4 µg/tree                                                                                                                                                    | 8,42                                                                                                                                  | Glyphosate                |
|                                                |             |                                    | Foliar application at 10 µg/leaf<br>or 10.7 mg/leaf                                                                                                                                  | 7, 21, 28, 49, 70                                                                                                                     | Glyphosate                |
|                                                |             | Grapes                             | Grapes                                                                                                                                                                               | Soil application at 8.1 (PMG-label) and<br>7.8 kg/ha (TMS-label) corresponding to 5.6<br>or 5.4 kg glyphosate equiv./ha, respectively | 14, 365                   |
|                                                |             |                                    | Overspray on bunches at 14.3 mg per 10<br>bunches (PMG-label) and 13.2 mg per 10<br>bunches (TMS-label) corresponding to 9.9<br>mg and 9.1 mg expressed as glyphosate<br>equivalents | 14                                                                                                                                    | Glyphosate trimesium salt |
|                                                |             | Grapes                             | Soil application (drench) at 8.3 kg/ha (PMG-<br>label) (corresponding to 5.7 kg glyphosate<br>equiv./ha) or 7.1 kg/ha (TMS label)                                                    | 7                                                                                                                                     | Glyphosate trimesium salt |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups   | Crop(s)                           | Application(s)                                                                                                                                                    | Sampling (DAT)        | Comment/Source            |
|------------------------------------------------|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|
| ,                                              |               |                                   | (corresponding to 4.9 kg glyphosate                                                                                                                               |                       |                           |
|                                                |               |                                   | equiv./ha)                                                                                                                                                        |                       |                           |
|                                                |               | Grapes;<br>supportive only        | Soil application at 3.36 kg/ha or AMPA at 1.68 kg/ha                                                                                                              | 42, 84                | Glyphosate or AMPA        |
|                                                |               |                                   | Trunk application at 40 µg per tree (corresponding to 0.17 kg glyphosate/ha)                                                                                      | 42, 84                | Glyphosate                |
|                                                |               |                                   | Hydroponic treatment at 5, 10, 20 or<br>40 mg/kg                                                                                                                  | 10, 21, 42            | Glyphosate                |
|                                                |               |                                   | Foliar application at 20 µg per leaf                                                                                                                              | 7, 14, 28, 42, 56, 70 | Glyphosate                |
|                                                |               |                                   | (120 µg per plant)                                                                                                                                                |                       |                           |
|                                                | Root crops    | Potato; not acceptable            | Soil application at 23.8 mg per pot or AMPA at 23.4 mg per pot (application to bare soil)                                                                         | 9, 15, 25, 67, 121    | Glyphosate or AMPA        |
|                                                |               | 1                                 | Soil application at 4.48 kg/ha<br>planting of pre-grown potatoes (BBCH 09)<br>(weeds treated with glyphosate and<br>incorporated into soil to simulate ploughing) | 9, 15, 25, 67, 121    | Glyphosate                |
|                                                |               |                                   | Foliar application at 108 µg per plant at pre-<br>bloom stage                                                                                                     | 1, 3, 14, 34          | Glyphosate                |
|                                                |               | Sugar beets;                      | Soil application at 8.0 mg per pot                                                                                                                                | 28, 49, 56            | Glyphosate or AMPA        |
|                                                |               | supportive only                   | Foliar application at 3.57 $\mu$ g per plant and 0.89 $\mu$ g per leaf                                                                                            | 35                    | Glyphosate                |
|                                                | Cereals/grass | Wheat                             | 5.64 kg/ha (corresponding to 3.89 kg glyphosate equiv./ha)                                                                                                        | 7                     | Glyphosate trimesium salt |
|                                                |               | Barley, oat,                      | Soil application at 4.5 kg/ha                                                                                                                                     | 28, 42, 56            | Glyphosate                |
|                                                |               | sorghum, rice;<br>supportive only | Hydroponic treatment at 0.183 mg/mL                                                                                                                               | 7, 14, 20, 28         |                           |
|                                                |               | Wheat, maize;<br>supportive only  | Soil application at 4.5 kg/ha or AMPA at 1.7 kg/ha                                                                                                                | 28, 42, 56            | Glyphosate or AMPA        |
|                                                |               | ** 2                              | Sand culture experiment at 2.24 kg/ha                                                                                                                             | 4, 10, 18             |                           |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups     | Crop(s)                             | Application(s)                                                                                                                                                                                                                                                      | Sampling (DAT)                   | Comment/Source            |
|------------------------------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|
|                                                |                 |                                     | Hydroponic treatment at 3 mg/24 plants<br>(maize) or 3 mg/72 plants (wheat)                                                                                                                                                                                         | 6, 12, 20, 28                    |                           |
|                                                |                 | Pasture;                            | Soil application at 4.48 kg/ha                                                                                                                                                                                                                                      | 42, 84, 126, 168, 224            | Glyphosate                |
|                                                |                 | supportive only                     | Foliar application at 1.68 kg/ha to<br>quackgrass followed by incorporation in the<br>soil after 1 week, and after 1 month sowing<br>of fescue/alfalfa mixture                                                                                                      | 42, 84, 126, 168                 | _                         |
|                                                |                 |                                     | Foliar application at 1.12 kg/ha                                                                                                                                                                                                                                    | 63, 105, 161                     |                           |
|                                                |                 |                                     | Pre-harvest application at 1.12 kg/ha                                                                                                                                                                                                                               | 7                                |                           |
|                                                | Pulses/oilseeds | Soybean                             | Soil drench at 8.4 kg/ha                                                                                                                                                                                                                                            | 31, 97                           | Glyphosate trimesium sale |
|                                                |                 | Soybean, cotton;<br>supportive only | Soil application at 4.5 kg/ha or AMPA at 1.7 kg/ha                                                                                                                                                                                                                  | 28, 42, 56                       | Glyphosate or AMPA        |
|                                                |                 |                                     | Sand culture experiment at 2.24 kg/ha                                                                                                                                                                                                                               | 4, 10, 18                        | Glyphosate                |
|                                                |                 |                                     | Hydroponic treatment at 12 mg/24 plants or<br>50 mg/99 plants or 12 mg/24 plants<br>(different label) or 12 mg/24 plants (different<br>label) or mixture of <sup>13/14</sup> C-glyphosate at<br>50 mg/198 plants or 12 mg/24 plants for 6<br>days                   | 6, 12, 20, 25, 26, 28, 42,<br>56 | Glyphosate                |
|                                                | Miscellaneous   | Coffee                              | Soil application at 4.5 kg/ha                                                                                                                                                                                                                                       | 28, 42, 56                       | Glyphosate or AMPA        |
|                                                |                 |                                     | Stem treatment at 1.9 mg/plant                                                                                                                                                                                                                                      | 35                               | Glyphosate                |
|                                                |                 |                                     | Foliar application at 0.32 mg/plant, only<br>upper or only lower leaf surface; 0.64<br>mg/plant, upper and lower surface treated;<br>0.608 mg/plant, both surfaces treated, used<br>for further extraction; 1.9 mg/plant lower<br>leaf surface on a tree with beans | 21, 35<br>Every 28 days<br>35    | Glyphosate                |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups     | Crop(s)         | Application(s)                                                                                                  | Sampling (DAT)                           | Comment/Source |  |  |  |  |  |  |  |        |                                                    |            |            |
|------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|--|--|--|--|--|--|--|--------|----------------------------------------------------|------------|------------|
|                                                |                 |                 | Hydroponic treatment at 1.1, 3.6 or 11.1 mg/L                                                                   | 21                                       | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 | Sugarcane;      | Hydroponic treatment at 3 mg/plant                                                                              | 7, 28, 56, 84                            | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 | supportive only | Foliar application at 1.96 mg per plant                                                                         | 7, 28, 56, 84                            | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
| CP4 EPSPS &                                    | Root crops      | Sugar beet      | Pre-emergence at 0.9 kg/ha                                                                                      | 158                                      | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
| GOX modified                                   | -               |                 | Post-emergence 2x 1.08 kg/ha                                                                                    | 91                                       |                |  |  |  |  |  |  |  |        |                                                    |            |            |
| crops                                          | Cereals/grass   | Wheat           | Spray applications 2x 0.84 kg/ha                                                                                | 5, 24-30, 84                             | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 | Maize           | Spray applications 1x 0.93 kg/ha and 1x 0.84 kg/ha                                                              | 0, 37, 49-53, 83                         | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                | Pulses/oilseeds | Canola          | Post-emergence 1x 0.455 kg/ha                                                                                   | 87                                       | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 |                 | Post-emergence 2x 0.90 kg/ha                                                                                    | 79                                       |                |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 | Soybean         | Pre-emergence 1x 5.38 kg/ha                                                                                     | 56, 84, 104                              | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 |                 | Early post-emergence 1x 0.84 kg/ha                                                                              | 35, 63, 83                               |                |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 |                 | Sequential post-emergence 1x 0.84 kg/ha and 1x 1.68 kg/ha                                                       | 13, 41, 61                               |                |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 |                 |                                                                                                                 |                                          |                |  |  |  |  |  |  |  | Cotton | Spray applications 1x 0.93 kg/ha and 1x 1.27 kg/ha | 0, 27, 158 | Glyphosate |
| GAT modified<br>crops                          | Root crops      | Maize           | Pre-emergence 1x 4.26 kg/ha to bare soil and foliar applications 3x 1.1 kg/ha                                   | 48 DAT soil, 59 DAT3,<br>7 DAT4          | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
| -                                              | Pulses/oilseeds | Canola          | Pre-emergence 1x 4.5 kg/ha to bare soil<br>and foliar applications 3x 1.0 kg/ha                                 | 38 DAT3, 90 DAT3, 7<br>DAT4              | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
|                                                |                 | Soybean         | Pre-emergence 1x 3.290 kg/ha to bare soil<br>and 3 foliar applications 1x 1.410, 1x 2.284<br>and 1x 0.880 kg/ha | 36 DAT soil, 4 DAT2,<br>82 DAT3, 14 DAT4 | Glyphosate     |  |  |  |  |  |  |  |        |                                                    |            |            |
| Rotational<br>crops<br>(available<br>studies)  | Crop groups     | Crop(s)         | Application(s)                                                                                                  | PBI (DAT)                                | Comment/Source |  |  |  |  |  |  |  |        |                                                    |            |            |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups | Crop(s)                  | Application(s)                                                                                                                                                                                 | Sampling (DAT) | Comment/Source            |
|------------------------------------------------|-------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|
|                                                | Root/tuber  | Radish                   | Soil application at 6.5 kg/ha                                                                                                                                                                  | 30, 120, 365   | Glyphosate                |
|                                                | crops       |                          | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 3.87 kg/ha (expressed as<br>glyphosate equivalents)                                        | 35             | Glyphosate trimesium salt |
|                                                |             |                          | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 6.56 kg/ha split in three<br>monthly applications (expressed as<br>glyphosate equivalents) | 63, 308        | Glyphosate trimesium salt |
|                                                |             | Carrot<br>Turnip<br>Beet | Application on planted rye grass at 4.16 kg/ha; crop of soybeans was planted 7 days after application                                                                                          | 30, 119, 364   | Glyphosate                |
|                                                |             |                          | Application at 4.48 kg/ha on planted pea                                                                                                                                                       | 1-23           | Glyphosate                |
|                                                |             |                          | Application at 4.48 kg/ha on planted cabbage                                                                                                                                                   | 1-23           | Glyphosate                |
|                                                |             |                          | Soil application at 4.12 kg/ha (expressed as glyphosate equivalents)                                                                                                                           | 35, 95, 370    | Glyphosate trimesium salt |
|                                                |             |                          | Soil application at 2x 4.48 kg/ha; soybean was planted 3 days after application                                                                                                                | 30             | Glyphosate                |
|                                                |             |                          | Soil application at 4.48 kg/ha; soybean or wheat was planted 3 days after application                                                                                                          | 120            | Glyphosate                |
|                                                |             |                          | Soil application at 4.48 kg/ha; cabbage was planted 3 days after application                                                                                                                   | 365            | Glyphosate                |
|                                                | Leafy crops | Lettuce                  | Soil application at 6.5 kg/ha                                                                                                                                                                  | 30, 120, 365   | Glyphosate                |
|                                                |             |                          | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 3.87 kg/ha (expressed as                                                                   | 35             | Glyphosate trimesium salt |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups          | Crop(s) | Application(s)                                                                                                                                                                                 | Sampling (DAT) | Comment/Source           |
|------------------------------------------------|----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|
|                                                |                      |         | glyphosate equivalents)                                                                                                                                                                        |                |                          |
|                                                |                      |         | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 6.56 kg/ha split in three<br>monthly applications (expressed as<br>glyphosate equivalents) | 63, 308        | Glyphosate trimesium sal |
|                                                |                      |         | Application on planted rye grass at 4.16 kg/ha; crop of soybeans was planted 7 days after application                                                                                          | 30, 119, 364   | Glyphosate               |
|                                                |                      | Cabbage | Soil application at 2x 4.48 kg/ha; cabbage was planted 3 days after application                                                                                                                | 30             | Glyphosate               |
|                                                |                      |         | Soil application at 4.48 kg/ha; beet was planted 3 days after application                                                                                                                      | 120            | Glyphosate               |
|                                                |                      |         | Soil application at 4.48 kg/ha; soybean or wheat was planted 3 days after application                                                                                                          | 365            | Glyphosate               |
|                                                |                      |         | Application at 4.48 kg/ha on planted pea                                                                                                                                                       | 1-23           | Glyphosate               |
|                                                |                      |         | Application at 4.48 kg/ha on planted carrot                                                                                                                                                    | 1-23           | Glyphosate               |
|                                                |                      |         | Application at 4.48 kg/ha on planted bean                                                                                                                                                      | 1-23           | Glyphosate               |
|                                                | Cereal (small grain) | l Wheat | Soil application at 6.5 kg/ha                                                                                                                                                                  | 30, 120, 365   | Glyphosate               |
|                                                |                      |         | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 3.87 kg/ha (expressed as<br>glyphosate equivalents)                                        | 35             | Glyphosate trimesium sal |
|                                                |                      |         | Primary crop soybean seeds were planted<br>immediately prior to application; soil<br>application at 6.56 kg/ha split in three<br>monthly applications (expressed as                            | 63, 308        | Glyphosate trimesium sal |

| <b>Primary crops</b><br>(available<br>studies) | Crop groups | Crop(s)    | Application(s)                                                                                        | Sampling (DAT) | Comment/Source            |
|------------------------------------------------|-------------|------------|-------------------------------------------------------------------------------------------------------|----------------|---------------------------|
|                                                |             |            | glyphosate equivalents)                                                                               |                |                           |
|                                                |             |            | Soil application at 4.12 kg/ha (expressed as glyphosate equivalents)                                  | 35, 95, 370    | Glyphosate trimesium salt |
|                                                |             |            | Soil application at 2x 4.48 kg/ha; wheat was planted 3 days after application                         | 30             | Glyphosate                |
|                                                |             |            | Soil application at 4.48 kg/ha; cabbage was planted 3 days after application                          | 120            | Glyphosate                |
|                                                |             |            | Soil application at 4.48 kg/ha; beet was planted 3 days after application                             | 365            | Glyphosate                |
|                                                |             | Barley     | Application on planted rye grass at 4.16 kg/ha; crop of soybeans was planted 7 days after application | 30, 119, 364   | Glyphosate                |
|                                                |             | Sweet corn | Application at 4.48 kg/ha on planted bean                                                             | 1-23           | Glyphosate                |
|                                                | other       | Pea        | Application at 4.48 kg/ha on planted cabbage                                                          | 1-23           | Glyphosate                |
|                                                |             | Bean       | Application at 4.48 kg/ha on planted carrot                                                           | 1-23           | Glyphosate                |

| Processed<br>commodities | Conditions                                        | Stable? | Comment/Source                                               |
|--------------------------|---------------------------------------------------|---------|--------------------------------------------------------------|
| (hydrolysis<br>study)    | Pasteurisation (20 min, 90°C, pH<br>4)            | Yes     | Data available for<br>glyphosate, AMPA, and<br>N-acetyl AMPA |
|                          | Baking, brewing and boiling (60 min, 100°C, pH 5) | Yes     | Data available for<br>glyphosate, AMPA, and<br>N-acetyl AMPA |

| Processed<br>commodities                                                                   | Conditions                                             |                                                                                          | Stable?                                                                                                                                                                                                           | Comment/Source                                                                                                             |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                            | Sterilisation (20 min, 120°C, pH 6)                    | Yes                                                                                      |                                                                                                                                                                                                                   | Data available for<br>glyphosate, AMPA, and<br>N-acetyl AMPA                                                               |  |
|                                                                                            | Other processing conditions                            | No dat                                                                                   | a available, not required                                                                                                                                                                                         |                                                                                                                            |  |
| Can a general re crops?                                                                    | sidue definition be proposed for primary               | No                                                                                       | Different residue definitions j<br>genetically modified crops                                                                                                                                                     | proposed for conventional and                                                                                              |  |
| Rotational crop                                                                            | and primary crop metabolism similar?                   | Yes                                                                                      |                                                                                                                                                                                                                   |                                                                                                                            |  |
|                                                                                            | in processed commodities similar to n raw commodities? | Yes                                                                                      |                                                                                                                                                                                                                   |                                                                                                                            |  |
| Plant residue de                                                                           | finition for monitoring (RD-Mo)                        |                                                                                          | phosate, AMPA and <i>N</i> -acetyl-glyphosat<br>s pending data gaps on genotoxicity for                                                                                                                           |                                                                                                                            |  |
| Plant residue de                                                                           | finition for risk assessment (RD-RA)                   | However, an overall resproposed as sum of glyg<br>glyphosate<br>The residue definition i | m of glyphosate and AMPA, expressed a sidue definition for all crops (both conve phosate, AMPA, <i>N</i> -acetyl-glyphosate an s pending data gaps on genotoxicity for A and N material AMPA and N material AMPA. | entional and GMO crops) can be<br>d <i>N</i> -acetyl-AMPA, expressed as<br><i>N</i> -acetyl glyphosate, <i>N</i> -glyceryl |  |
|                                                                                            |                                                        |                                                                                          | AMPA, <i>N</i> -acetyl AMPA, <i>N</i> -methyl AMPA and <i>N</i> -malonyl AMPA.<br>Honey and bee products: sum of glyphosate and AMPA, expressed as glyphosate                                                     |                                                                                                                            |  |
| Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs) |                                                        | LC-MS/MS<br>LOQ 0.05 mg/kg for gl<br>LOQ 0.025 mg/kg for A<br>Extraction efficiency-pa   | V-acetylglyphosate                                                                                                                                                                                                |                                                                                                                            |  |

## Stability of residues in plants

|                                       | Category             | Commodity                 | <b>T</b> (°C) | Stabili | ty period | Comment/Source                                    |
|---------------------------------------|----------------------|---------------------------|---------------|---------|-----------|---------------------------------------------------|
| Plant products<br>(available studies) |                      |                           |               | Value   | Unit      |                                                   |
|                                       |                      |                           | Glyı          | phosate |           |                                                   |
|                                       | High water content   | Sugar beet leaves         | -18           | 18      | Months    | Maximum general storage                           |
|                                       |                      | Maize forage/green plants | -18           | 12      | Months    | stability in high water matrix<br>24 months       |
|                                       |                      | Soybean forage            | -18           | Max.24  | Months    | <u>24 monuis</u>                                  |
|                                       |                      | Banana (whole fruit)      | -18           | 12      | Months    |                                                   |
|                                       |                      | Tomato                    | -18           | 31      | Months    |                                                   |
|                                       |                      | Clover                    | -18           | 31      | Months    |                                                   |
|                                       | High starch content  | Maize grain               | -18           | Max. 24 | Months    | Maximum general storage                           |
|                                       |                      | Barley grain              | -18           | 18      | Months    | stability in high starch matrix                   |
|                                       |                      | Wheat/rye grain           | -18           | 45      | Months    | <u>24 months</u>                                  |
|                                       |                      | Sorghum grain             | -18           | 48      | Months    |                                                   |
|                                       |                      | Sugar beet roots          | -18           | 18      | Months    |                                                   |
|                                       | High oil content     | Soybean seeds             | -18           | 24      | Months    | Maximum general storag                            |
|                                       |                      | Oilseed rape/ linseeds    | -18           | 18      | Months    | stability in high oil matrix:<br><u>24 months</u> |
|                                       | High protein content | Dry beans                 | -18           | 18      | Months    |                                                   |
|                                       | High acid content    | Orange                    | -18           | 24      | Months    |                                                   |

|                                       | Category            | Commodity                 | <b>T</b> (°C) | Stabil  | ity period | <b>Comment/Source</b>                                              |
|---------------------------------------|---------------------|---------------------------|---------------|---------|------------|--------------------------------------------------------------------|
| Plant products<br>(available studies) |                     |                           |               | Value   | Unit       |                                                                    |
|                                       | Other matrices      | Barley straw              | -18           | 18      | Months     |                                                                    |
|                                       |                     | Wheat/rye straw           | -18           | 45      | Months     |                                                                    |
|                                       |                     | Soybean straw             | -18           | 24      | Months     |                                                                    |
|                                       |                     | Soybean hay               | -18           | 12      | Months     |                                                                    |
|                                       |                     | Maize stover              | -18           | 23      | Months     |                                                                    |
|                                       |                     | Sorghum stover            | -18           | 31      | Months     |                                                                    |
|                                       |                     |                           | A             | MPA     |            |                                                                    |
|                                       | High water content  | Sugar beet leaves         | -18           | 18      | Months     | Maximum general storage                                            |
|                                       |                     | Maize forage/green plants | -18           | 12      | Months     | stability in high water matrix:<br><u>18 months, except clover</u> |
|                                       |                     | Soybean forage            | -18           | 24      | Months     |                                                                    |
|                                       |                     | Tomato                    | -18           | 31      | Months     |                                                                    |
|                                       |                     | Clover                    | -18           | 1       | Months     |                                                                    |
|                                       | High starch content | Maize grain               | -18           | 18      | Months     | Maximum general storage                                            |
|                                       |                     | Barley grain              | -18           | Max.12  | Months     | stability in high starch matrix<br>10 - 12 months                  |
|                                       |                     | Wheat/rye grain           | -18           | Max. 10 | Months     | <u>10 - 12 monuis</u>                                              |
|                                       |                     | Sorghum grain             | -18           | 48      | Months     |                                                                    |
|                                       |                     | Sugar beet roots          | -18           | Max. 12 | Months     |                                                                    |
|                                       | High oil content    | Soybean seeds             | -18           | 24      | Months     |                                                                    |
|                                       | High acid content   | Orange                    | -18           | 24      | Months     |                                                                    |

|                                       | Category            | Commodity                 | <b>T</b> (°C) | Stabili    | ity period | Comment/Source |
|---------------------------------------|---------------------|---------------------------|---------------|------------|------------|----------------|
| Plant products<br>(available studies) |                     |                           |               | Value      | Unit       |                |
|                                       | Other matrices      | Maize stover              | -18           | 6          | Months     |                |
|                                       |                     | Wheat/rye straw           | -18           | б          | Months     |                |
|                                       |                     | Soybean straw             | -18           | 24         | Months     |                |
|                                       |                     | Soybean hay               | -18           | 9          | Months     |                |
|                                       |                     | Sorghum stover            | -18           | 9          | Months     |                |
|                                       |                     |                           | N-acetyl      | glyphosate |            |                |
|                                       | High water content  | Maize forage/ green plant | -18           | 12         | Months     |                |
|                                       |                     | Soybean forage            | -18           | 12         | Months     |                |
|                                       | High starch content | Maize grain               | -18           | 12         | Months     |                |
|                                       | High oil content    | Soybean seed              | -18           | 12         | Months     |                |
|                                       | Other matrices      | Maize stover              | -18           | 12         | Months     |                |
|                                       |                     | Soybean hay               | -18           | 12         | Months     |                |
|                                       |                     |                           | N-acet        | yl AMPA    |            |                |
|                                       | High water content  | Maize forage/ green plant | -18           | 23         | Months     |                |
|                                       |                     | Soybean forage            | -18           | 18         | Months     |                |
|                                       | High starch content | Maize grain               | -18           | 23         | Months     |                |
|                                       | High oil content    | Soybean seed              | -18           | 18         | Months     |                |
|                                       | Other matrices      | Maize stover              | -18           | 23         | Months     |                |
|                                       |                     | Soybean hay               | -18           | 18         | Months     |                |

## Magnitude of residues in plants

## Summary of residues data from the supervised residue trials – Primary crops

| Commodity                                           | Region/<br>Indoor<br>(a) | Residue levels observed in<br>the supervised residue trials<br>(mg/kg)<br>Mo: Glyphosate<br>RA: Sum of glyphosate and<br>AMPA, expressed as<br>glyphosate | Comments/Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg)       | STMR <sup>(c)</sup><br>(mg/kg) | <b>CF</b> <sup>(d)</sup> |
|-----------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|--------------------------------|--------------------------|
| Post-emergence u<br>Citrus fruits,<br>stone fruits, | NEU                      | <b>Mo:</b> 3x <0.05<br><b>RA:</b> 3x <0.05                                                                                                                | Combined NEU dataset on apple (2) and plum (1). Combined SEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05*                        | <b>Mo:</b> 0.05<br><b>RA:</b> 0.05 | Mo: 0.05<br>RA: 0.05           | 1                        |
| pome fruits,<br>kiwi, tree nuts,<br>banana          | SEU                      | Mo: 26x <0.05<br>RA: 26x <0.05                                                                                                                            | dataset on mandarin (2), orange (2)<br>hazelnut (1), pistachio (1), apple<br>(2), apricot (4), cherry (2), peach<br>(1), plum (6), kiwi (2), and banana<br>(3).<br>NEU and SEU datasets are pooled<br>and data can be extrapolated to all<br>orchard crops based on a risk<br>envelope approach.<br>Since residues of glyphosate and<br>AMPA were both <0.05 mg/kg,<br>only the LOQ of glyphosate was<br>considered for the calculation of<br>residues according to the RD-RA.<br>It is noted that additional<br>information regarding the<br>extraction efficiency, and in some<br>trials (2 NEU and 8 SEU) the<br>derivatisation efficiency, of the |                              |                                    |                                |                          |

| Commodity                                  | Region/<br>Indoor<br>(a) | Residue levels observed in<br>the supervised residue trials<br>(mg/kg)Mo: GlyphosateRA: Sum of glyphosate and<br>AMPA, expressed as<br>glyphosate | Comments/Source                                                                                                                                                                                                                                                                                                                                                                                                      | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg)       | STMR <sup>(c)</sup><br>(mg/kg)     | CF <sup>(d)</sup> |
|--------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|------------------------------------|-------------------|
|                                            |                          |                                                                                                                                                   | analytical method is needed for<br>confirmation.<br>Appropriate risk mitigation<br>measures shall be established on<br>national level to prevent crop<br>contamination.                                                                                                                                                                                                                                              |                              |                                    |                                    |                   |
| Vines (table<br>grapes and wine<br>grapes) | NEU<br>SEU               | Mo: 9x <0.05<br>RA: 9x <0.05<br>Mo: 8x <0.05<br>RA: 8x <0.05                                                                                      | NEU and SEU datasets are pooled<br>for deriving the MRL and risk<br>assessment values.<br>Since residues of glyphosate and<br>AMPA were both <0.05 mg/kg,<br>only the LOQ of glyphosate was<br>considered for the calculation of<br>residues according to the RD-RA.<br>It is noted that additional<br>information regarding the<br>extraction efficiency of the<br>analytical method is needed for<br>confirmation. | 0.05*                        | <b>Mo:</b> 0.05<br><b>RA:</b> 0.05 | <b>Mo:</b> 0.05<br><b>RA:</b> 0.05 | 1                 |

| Commodity    | Region/<br>Indoor<br>(a) | <ul> <li>Residue levels observed in<br/>the supervised residue trials<br/>(mg/kg)</li> <li>Mo: Glyphosate</li> <li>RA: Sum of glyphosate and<br/>AMPA, expressed as<br/>glyphosate</li> </ul> | Comments/Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg) | STMR <sup>(c)</sup><br>(mg/kg)     | CF <sup>(d)</sup> |
|--------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------------|-------------------|
|              |                          |                                                                                                                                                                                               | Appropriate risk mitigation<br>measures shall be established on<br>national level to prevent crop<br>contamination.                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                              |                                    |                   |
| Table olives | NEU                      | -                                                                                                                                                                                             | No data available for NEU (data requirement).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                            | Mo: -<br>RA: -               | Mo: -<br>RA: -                     | -                 |
|              | SEU                      | <b>Mo:</b> 7x <0.05<br><b>RA:</b> 4x <0.05                                                                                                                                                    | Since residues of glyphosate and<br>AMPA were both <0.05 mg/kg,<br>only the LOQ of glyphosate was<br>considered for the calculation of<br>residues according to the RD-RA.<br>It is noted, however, that AMPA<br>was determined in 4 trials only.<br>It is noted that additional<br>information regarding the<br>extraction efficiency of the<br>analytical method is needed for<br>confirmation.<br>Appropriate risk mitigation<br>measures shall be established on<br>national level to prevent crop<br>contamination. | 0.05*                        | Mo: 0.05<br>RA: 0.05         | <b>Mo:</b> 0.05<br><b>RA:</b> 0.05 | 1                 |

Post-harvest, pre-sowing, pre-planting, pre-emergence outdoor use

Root and tuberNEUMo: 17x < 0.05Combined NEU dataset on potato0.05\*Mo: 0.05Mo: 0.05

1

| Commodity                                                                                                   | Region/<br>Indoor<br>(a) | Residue levels observed in<br>the supervised residue trials<br>(mg/kg)Mo: GlyphosateRA: Sum of glyphosate and<br>AMPA, expressed as<br>glyphosate | Comments/Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg) | STMR <sup>(c)</sup><br>(mg/kg) | CF <sup>(d)</sup> |
|-------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------|-------------------|
| vegetables, bulb                                                                                            |                          | <b>RA:</b> 17x <0.05                                                                                                                              | (2), carrot (2), onion (2), tomato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | <b>RA:</b> 0.05              | <b>RA:</b> 0.05                |                   |
| vegetables,<br>fruiting<br>vegetables,<br>brassica, leafy<br>vegetables, stem<br>vegetables,<br>sugar beets | SEU                      | Mo: 18x <0.05<br>RA: 18x <0.05                                                                                                                    | <ul> <li>(2), courgette (1), cauliflower (2),<br/>head cabbage (2), leaf lettuce (2),<br/>and leek (2). Combined SEU<br/>dataset on potato (2), carrot (2),<br/>onion (2), cucumber (1), courgette<br/>(1), cauliflower (2), head cabbage<br/>(2), head lettuce (2), leek (2), and<br/>sugar beet (2).</li> <li>NEU and SEU datasets are pooled<br/>and data can be extrapolated to all<br/>root and tuber vegetables, bulb<br/>vegetables, fruiting vegetables,<br/>brassica, leafy vegetables, stem<br/>vegetables, and sugar beets based<br/>on a risk envelope approach.</li> <li>Since residues of glyphosate and<br/>AMPA were both &lt;0.05 mg/kg,<br/>only the LOQ of glyphosate was<br/>considered for the calculation of<br/>residues according to the RD-RA.<br/>It is noted that additional<br/>information regarding the<br/>extraction efficiency of the<br/>analytical method is needed for<br/>confirmation.</li> </ul> |                              |                              |                                |                   |

| Commodity                                                            | Region/<br>Indoor<br>(a) | Residue levels observed in<br>the supervised residue trials<br>(mg/kg)Mo: GlyphosateRA: Sum of glyphosate and<br>AMPA, expressed as<br>glyphosate | Comments/Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg)       | STMR <sup>(c)</sup><br>(mg/kg) | CF <sup>(d)</sup> |
|----------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|--------------------------------|-------------------|
| Inter-row use                                                        |                          |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                    |                                |                   |
| Root and tuber<br>vegetables, bulb<br>vegetables,                    | NEU                      | <b>Mo:</b> 13x <0.05<br><b>RA:</b> 13x <0.05                                                                                                      | Combined NEU dataset on onion<br>(2), cucumber (2), courgette (1),<br>head lettuce (2), parsley (2), and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05*                        | <b>Mo:</b> 0.05<br><b>RA:</b> 0.05 | Mo: 0.05<br>RA: 0.05           | 1                 |
| fruiting<br>vegetables,<br>legume<br>vegetables, leafy<br>vegetables | SEU                      | Mo: 28x <0.05<br>RA: 28x <0.05                                                                                                                    | read forthee (2), parsiey (2), and<br>green beans (4). Combined SEU<br>dataset on carrot (4), radish (2),<br>onion (4), tomato (4), cucumber<br>(2), courgette (2), head lettuce (4),<br>parsley (2), and green beans (4).<br>NEU and SEU datasets are pooled<br>and data can be extrapolated to all<br>root and tuber vegetables, bulb<br>vegetables, fruiting vegetables,<br>legume vegetables, and leafy<br>vegetables based on a risk<br>envelope approach.<br>Since residues of glyphosate and<br>AMPA were both <0.05 mg/kg,<br>only the LOQ of glyphosate was<br>considered for the calculation of<br>residues according to the RD-RA.<br>It is noted that additional<br>information regarding the<br>extraction efficiency of the<br>analytical method is needed for<br>confirmation. |                              |                                    |                                |                   |

| Commodity      | Region/<br>Indoor<br>(a) | <ul> <li>Residue levels observed in the supervised residue trials (mg/kg)</li> <li>Mo: Glyphosate</li> <li>RA: Sum of glyphosate and AMPA, expressed as glyphosate</li> </ul> | Comments/Source                                                                                                                                                                                                                                                                                    | Calculated<br>MRL<br>(mg/kg) | HR <sup>(b)</sup><br>(mg/kg) | STMR <sup>(c)</sup><br>(mg/kg)   | CF <sup>(d)</sup> |
|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------|-------------------|
|                |                          |                                                                                                                                                                               | Appropriate risk mitigation<br>measures shall be established on<br>national level to prevent crop<br>contamination.                                                                                                                                                                                |                              |                              |                                  |                   |
| Summary of dat | ta on residue            | es in pollen and bee products (Re                                                                                                                                             | gulation (EU) No 283/2013, Annex P                                                                                                                                                                                                                                                                 | art A, point 6.              | 10.1)                        |                                  |                   |
| Honey          | NEU                      | <b>Mo:</b> 0.87, 3.2, 6.9<br><b>RA:</b> 0.91, 3.2, 6.9                                                                                                                        | Calculation of MRL and risk<br>assessment values provisional,<br>pending the submission of one<br>additional trial (data requirement).<br>It is furthermore noted that<br>additional information regarding<br>the extraction efficiency of the<br>analytical method is needed for<br>confirmation. | 20                           | Mo: 6.9<br>RA: 6.9           | <b>Mo:</b> 3.2<br><b>RA:</b> 3.2 | 1                 |

\* Indicates that the MRL is proposed at the limit of quantification.

Mo: residue levels expressed according to the monitoring residue definition; RA: residue levels expressed according to risk assessment residue definition.

(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Indoor: indoor EU trials or Country code: if non-EU trials.

(b): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(c): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(d): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.

### **Residues in rotational crops**

#### **Overall summary**

| Residues in rotational and succeeding crops expected based on confined rotational crop study? | Yes                                                                              |                                                     |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| Residues in rotational and succeeding crops expected based on field rotational crop study?    | Yes, but still inconclusive, since there is a data requirement for field studies | Data requirement for field rotational crop studies. |

### Summary of residues data from the rotational crops residue trials (if relevant, e.g. MRL, STMR, HR derived from rotational crops)

| Commodity | Region/<br>Indoor<br>(a) | PBI<br>(days)<br>(b) | Residue levels observed<br>in the supervised residue<br>trials<br>(mg/kg) | Comments/Source                                     | Calculated<br>MRL<br>(mg/kg) | HR <sup>(c)</sup><br>(mg/kg) | STMR <sup>(d)</sup><br>(mg/kg) | CF<br>(e) |
|-----------|--------------------------|----------------------|---------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|------------------------------|--------------------------------|-----------|
|           |                          |                      |                                                                           | Data requirement for field rotational crop studies. |                              |                              |                                |           |
|           |                          |                      |                                                                           |                                                     |                              |                              |                                |           |

\* Indicates that the MRL is proposed at the limit of quantification.

Mo: residue levels expressed according to the monitoring residue definition; RA: residue levels expressed according to risk assessment residue definition.

(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Country code: if non-EU trials.

(b): Plant-back interval: The interval (days, months, years) between the final application of a pesticide product to a primary crop and the planting of a rotational crop.

(c): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(d): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

(e): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.

### **Processing factors**

| Processed commodity | Number of                       | <b>Processing Factor</b> (PF)                                               | <b>Processing Factor</b> (PF) |   |                                                                                                             |
|---------------------|---------------------------------|-----------------------------------------------------------------------------|-------------------------------|---|-------------------------------------------------------------------------------------------------------------|
|                     | valid<br>studies <sup>(a)</sup> | Individual values                                                           | Median PF                     | _ |                                                                                                             |
| Olive/Raw oil       | 3                               | <0.03, <0.04, <0.05, <0.05, <0.10, <0.11, <0.12, <0.24, <0.29, <0.39, <0.45 | <0.11                         | 1 | CF determined to be 1 since<br>no residues of AMPA were<br>determined in the RAC or<br>processed commodity. |
| Olive/Refined oil   | 1                               | <0.05, <0.24, <0.39, <0.45                                                  | <0.32                         | 1 | CF determined to be 1 since<br>no residues of AMPA were<br>determined in the RAC or<br>processed commodity. |

PF: Processing factor (=Residue level in processed commodity expressed according to RD-Mo/ Residue level in raw commodity expressed according to RD-Mo);

CF<sub>p</sub>: Conversion factor for risk assessment in processed commodity (=Residue level in processed commodity expressed according to RD-RA / Residue level in processed commodity expressed according to RD-Mo)

(a): Studies with residues in the RAC at or close to the LOQ were disregarded (unless concentration may occur)

(b): Median of the individual conversion factors for each processing residues trial.

(c): A tentative PF is derived based on a limited dataset.

| Relevant<br>groups<br>(subgroups) |         | Dietary buro     | den expressed | in      | Most critical    | Most critical    | Trigger           | Comments |
|-----------------------------------|---------|------------------|---------------|---------|------------------|------------------|-------------------|----------|
|                                   | mg/kg b | mg/kg bw per day |               | kg DM   | subgroup         | commodity<br>(b) | exceeded<br>(Y/N) |          |
| (subgroups)                       | Median  | Maximum          | Median        | Maximum |                  |                  | (1/1()            |          |
| Cattle<br>(all)                   | 0.013   | 0.013            | 0.43          | 0.43    | Dairy cattle     | Swede (roots)    | Y                 |          |
| Cattle<br>(dairy only)            | 0.013   | 0.013            | 0.33          | 0.33    | Dairy cattle     | Swede (roots)    | Y                 |          |
| Sheep<br>(all)                    | 0.013   | 0.013            | 0.37          | 0.37    | Lamb             | Swede (roots)    | Y                 |          |
| Sheep<br>(ewe only)               | 0.012   | 0.012            | 0.37          | 0.37    | Ram/Ewe          | Swede (roots)    | Y                 |          |
| Swine<br>(all)                    | 0.008   | 0.008            | 0.34          | 0.34    | Swine (breeding) | Swede (roots)    | Y                 |          |
| Poultry<br>(all)                  | 0.006   | 0.008            | 0.08          | 0.08    | Poultry (layer)  | Swede (roots)    | Y                 |          |
| Poultry<br>(layer only)           | 0.006   | 0.008            | 0.08          | 0.08    | Poultry (layer)  | Swede (roots)    | Y                 |          |
| Fish                              | N/A     | N/A              | N/A           | N/A     | N/A              |                  |                   |          |

(a): When one group of livestock includes several subgroups (e.g. poultry "all" including broiler, layer and turkey), the result of the most critical subgroup is identified from the maximum dietary burdens expressed as "mg/kg bw per day".
(b): The most critical commodity is the major contributor identified from the maximum dietary burden expressed as "mg/kg bw per day".

**Residues in livestock** 

## Nature of residues and methods of analysis in livestock

| Metabolism studies | . methods of anal | lvsis and residu | ue definitions in livestock |
|--------------------|-------------------|------------------|-----------------------------|
|                    | ,                 |                  |                             |

| <b>Livestock</b> (available studies) | Animal                        | <b>Dose</b><br>(mg/kg bw/d)                                                                                                                                        | Duration<br>(days) | Comment/Source                                                                                                                 |
|--------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                      | Laying hen                    | 17.9                                                                                                                                                               | 7 and 5            | <i>N</i> -(phosphono- <sup>14</sup> C-methyl)glycine                                                                           |
|                                      |                               | <ul><li>8.86 glyphosate and 0.98 AMPA</li><li>7.95 glyphosate and 0.88 AMPA</li><li>26.78 glyphosate and 2.98 AMPA</li><li>7.76 glyphosate and 0.86 AMPA</li></ul> | 7                  | 9:1 mixture of <i>N</i> -(phosphono- ${}^{13}C/{}^{14}C$ -methyl)glycine and amino- ${}^{13}C/{}^{14}C$ -methylphosphonic acid |
|                                      |                               | 5.9                                                                                                                                                                | 10                 | <i>N</i> -(phosphono- <sup>14</sup> C-methyl)glycine trimesium salt                                                            |
|                                      |                               | 4.4                                                                                                                                                                | 7                  | [ <sup>14</sup> C]- <i>N</i> -Acetyl glyphosate                                                                                |
|                                      | Lactating<br>ruminants (goat) | 7.6; 6.4                                                                                                                                                           | 5 and 3            | <i>N</i> -(phosphono- <sup>14</sup> C-methyl)glycine                                                                           |
|                                      |                               | 2.6 glyphoste and 0.29 AMPA                                                                                                                                        | 5                  | 9:1 mixture of <i>N</i> -(phosphono- ${}^{13}C/{}^{14}C$ -methyl)glycine and amino- ${}^{13}C/{}^{14}C$ -methylphosphonic acid |
|                                      |                               | 3.9                                                                                                                                                                |                    | <i>N</i> -(phosphono- <sup>14</sup> C-methyl)glycine trimesium salt                                                            |
|                                      |                               | 8.42                                                                                                                                                               |                    | [ <sup>14</sup> C]- <i>N</i> -Acetylglyphosate                                                                                 |
|                                      | Pig                           | -                                                                                                                                                                  | -                  | Not triggered                                                                                                                  |
|                                      | Fish                          | -                                                                                                                                                                  | -                  | Not triggered                                                                                                                  |

Time needed to reach a plateau concentration in milk and eggs (days)

Milk: 7 Eggs: 14 yes

Metabolism in rat and ruminant similar

Can a general residue definition be proposed for animals?

Animal residue definition for monitoring (RD-Mo)

Animal residue definition for risk assessment (RD-RA)

Fat soluble residues

Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs)

| Sum of glyphosate, AMPA and <i>N</i> -acetyl glyphosate, expressed as glyphosate.<br>The residue definition is pending data gaps on genotoxicity for <i>N</i> -acetyl-glyphosate.<br>Sum of glyphosate, AMPA, <i>N</i> -acetyl glyphosate and N-acetyl AMPA, expressed as glyphosate.<br>The residue definition is pending data gaps on genotoxicity for <i>N</i> -acetyl glyphosate ar <i>N</i> -acetyl AMPA.<br>No<br>LC-MS/MS<br>LOQ 0.025 mg/kg for glyphosate, AMPA and <i>N</i> -acetylglyphosate | yes                                                    |                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|
| glyphosate.<br>The residue definition is pending data gaps on genotoxicity for <i>N</i> -acetyl glyphosate ar<br><i>N</i> -acetyl AMPA.<br>No<br>LC-MS/MS                                                                                                                                                                                                                                                                                                                                               | 011                                                    |                                                                      |
| LC-MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | A, N-acetyl glyphosate and N-acetyl AMPA, expressed as               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The residue definition                                 | pending data gaps on genotoxicity for N-acetyl glyphosate an         |
| LOQ 0.025 mg/kg for glyphosate, AMPA and N-acetylglyphosate                                                                                                                                                                                                                                                                                                                                                                                                                                             | The residue definition <i>N</i> -acetyl AMPA.          | pending data gaps on genotoxicity for <i>N</i> -acetyl glyphosate an |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The residue definition<br><i>N</i> -acetyl AMPA.<br>No | pending data gaps on genotoxicity for <i>N</i> -acetyl glyphosate an |

| <b>Animal products</b> (available studies) | Animal   | Commodity                  | ommodity T (°C) |         | ty period | Compounds<br>covered | Comment/<br>Source |
|--------------------------------------------|----------|----------------------------|-----------------|---------|-----------|----------------------|--------------------|
|                                            |          |                            | -               | Value   | Unit      | -                    |                    |
|                                            | Pig      | Fat, muscle, liver, kidney | -18             | 26      | Months    | Glyphosate           |                    |
|                                            | Ruminant | Fat, muscle, liver, kidney | -18             | 24      | Months    |                      |                    |
|                                            | Ruminant | Milk                       | -18             | 22      | Months    |                      |                    |
|                                            | Poultry  | Fat, muscle, liver         | -18             | 25      | Months    | -                    |                    |
|                                            | Poultry  | Kidney                     | -18             | 13      | Months    | -                    |                    |
|                                            | Poultry  | Eggs                       | -18             | Max. 14 | Months    |                      |                    |

## Stability of residues in livestock

| Pig      | Muscle, liver,<br>kidney      | -18 | 26      | Months | AMPA |  |
|----------|-------------------------------|-----|---------|--------|------|--|
| Pig      | Fat                           | -18 | Max.15  |        |      |  |
| Ruminant | Fat, muscle, liver,<br>kidney | -18 | 24      | Months |      |  |
| Ruminant | Milk                          | -18 | 16      | Months |      |  |
| Poultry  | Fat, muscle, liver            | -18 | 25      | Months |      |  |
| Poultry  | Kidney                        | -18 | 13      | Months |      |  |
| Poultry  | Eggs                          | -18 | Max. 14 | Months |      |  |
|          |                               |     |         |        |      |  |

### Magnitude of residues in livestock

#### Summary of the residue data from livestock feeding studies

| Animal commodity             |                | t the closest<br>vel (mg/kg) | Estimated              | value at 1N                                | MRL<br>proposal | CF (c) |
|------------------------------|----------------|------------------------------|------------------------|--------------------------------------------|-----------------|--------|
|                              | Mean           | Highest                      | STMR <sub>Mo</sub>     | HR <sub>Mo</sub> <sup>(b)</sup><br>(mg/kg) | (mg/kg)         |        |
|                              |                |                              | (mg/kg)                |                                            |                 |        |
| Cattle (all) - Closest fee   | ding level (1  | mg/kg bw; 80                 | N rate) <sup>(d)</sup> | 1                                          |                 |        |
| Muscle                       | < 0.1          | < 0.1                        | < 0.1                  | < 0.1                                      | 0.1*            | 1      |
| Fat                          | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Liver                        | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Kidney                       | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Cattle (dairy only) - Clo    | osest feeding  | level (1 mg/k                | g bw; 80 N rat         | te) <sup>(d)</sup>                         |                 |        |
| Milk                         | <0.1           | n.a.                         | <0.1                   | < 0.1                                      | 0.1*            | 1      |
| Sheep (all) (e) - Closest f  | eeding level   | (1 mg/kg bw;                 | 78 N rate) (d)         |                                            |                 |        |
| Muscle                       | <0.1           | < 0.1                        | < 0.1                  | < 0.1                                      | 0.1*            | 1      |
| Fat                          | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Liver                        | < 0.2          | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Kidney                       | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Sheep (ewe only) (e) - Cl    | osest feeding  | level (1 mg/k                | g bw; 80 N ra          | te) <sup>(d)</sup>                         |                 |        |
| Milk                         | <0.1           | n.a.                         | < 0.1                  | < 0.1                                      | 0.1*            | 1      |
| Swine (all) (e) - Closest fe | eding level (  | 1 mg/kg bw; 1                | 26 N rate) (d)         |                                            |                 |        |
| Muscle                       | <0.1           | < 0.1                        | < 0.1                  | < 0.1                                      | 0.1*            | 1      |
| Fat                          | < 0.2          | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Liver                        | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| kidney                       | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Poultry (all) - Closest fe   | eding level (  | 1.2 mg/kg bw                 | ; 216 N rate) (        | d)                                         |                 |        |
| Muscle                       | <0.1           | < 0.1                        | < 0.1                  | < 0.1                                      | 0.1*            | 1      |
| Fat                          | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Liver                        | <0.2           | < 0.2                        | < 0.2                  | < 0.2                                      | 0.2*            | 1      |
| Poultry (layer only) - C     | losest feeding | g level (1.2 mg              | g/kg bw; 216           | N rate) <sup>(d)</sup>                     |                 |        |
| Eggs                         | < 0.1          | < 0.1                        | < 0.1                  | < 0.1                                      | 0.1*            | 1      |

Note RMS: Proposed MRLs (at LOQ) are in line with the conclusions in Article 12 MRL Review (EFSA 2019) where the combined LOQs of 0.1 and 0.2 mg/kg were reported in animal commodities.

n.a.: not applicable

n.r.: not reported

Median residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the median dietary (a): burden.

Highest residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the maximum dietary (b): burden.

(c): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment; proposed as 1 since N-acetyl-AMPA is not expected at significant levels.

Consumer risk assessment

(d): Closest feeding level and N dose rate related to the maximum dietary burden.
(e): Since extrapolation from cattle to other ruminants and swine is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in sheep and swine.

| ARfD                                             | 1.5 mg/kg bw (current renewal)                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Highest IESTI, according to EFSA PRIMo (rev.3.1) | Honey: 2% of ARfD                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| NESTI (% ARfD)                                   | Not applicable                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Assumptions made for the calculations            | The calculation is based on the highest residue<br>levels. The LOQ of glyphosate was used as input<br>value in case residues of glyphosate and AMPA<br>were both below the LOQ in the RACs.<br>Additional input is required from glyphosate and<br>AMPA residues in rotational crops, and acceptability<br>of the residue data needs to be confirmed by<br>additional information on extraction efficiency. |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| ADI                                              | 0.1 mg/kg bw per day (current renewal)                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| TMDI according to EFSA PRIMo                     | Highest TMDI: 9% ADI (NL toddlers)                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| NTMDI                                            | Not applicable                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Highest IEDI                                     | Not applicable                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| NEDI (% ADI)                                     | Not applicable                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Assumptions made for the calculations            | The calculation is based on the median residue<br>levels. The LOQ of glyphosate was used as input<br>value in case residues of glyphosate and AMPA<br>were both below the LOQ in the RACs.<br>Additional input is required from glyphosate and<br>AMPA residues in rotational crops, and acceptability<br>of the residue data needs to be confirmed by<br>additional information on extraction efficiency.  |  |  |  |  |

Consumer exposure assessment through drinking water resulting from groundwater metabolite(s) according to SANCO/221/2000 rev.10 Final (25/02/2003)

| Metabolite(s)                             | AMPA             |
|-------------------------------------------|------------------|
| ADI (mg/kg bw per day)                    | 0.1 mg/kg bw/day |
| Intake of groundwater metabolites (% ADI) | Adult: 0.96%     |
| C ( )                                     | Children: 2.89%  |
|                                           | Infants: 4.34%   |

| Code <sup>(a)</sup> | Commodity                                           | Existing<br>EU MRL | Proposed<br>EU MRL | Comment/justification                                                                                                                                                                   |  |
|---------------------|-----------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     |                                                     | (mg/kg)            | (mg/kg)            |                                                                                                                                                                                         |  |
| Enforceme           | ent residue definitio                               | n: Glyphosate      | e                  |                                                                                                                                                                                         |  |
| Representa          | tive uses                                           |                    |                    |                                                                                                                                                                                         |  |
| 0110000             | Citrus fruit                                        | 0.1*-0.5           | 0.05*              | The MRL proposal reflects the NEU                                                                                                                                                       |  |
| 0120000             | Tree nuts                                           | 0.1*               | 0.05*              | and SEU post-emergence use. Risk for<br>consumers unlikely.                                                                                                                             |  |
| 0130000             | Pome fruit                                          | 0.1*               | 0.05*              |                                                                                                                                                                                         |  |
| 0140000             | Stone fruit                                         | 0.1*               | 0.05*              |                                                                                                                                                                                         |  |
| 0151000             | Table and wine grapes                               | 0.5                | 0.05*              | The MRL proposal reflects the NEU<br>and SEU post-emergence use. Risk for<br>consumers unlikely.                                                                                        |  |
| 0161030             | Table olives                                        | 1                  | 0.05*              | The MRL proposal reflects the SEU<br>post-emergence use. For the NEU use<br>the data were not sufficient to derive a<br>MRL proposal (data requirement)<br>Risk for consumers unlikely. |  |
| 0162010             | Kiwi                                                | 0.1*               | 0.05*              | The MRL proposal reflects the N                                                                                                                                                         |  |
| 0163020             | Banana                                              | 0.1*               | 0.05*              | and SEU post-emergence use. Risk for consumers unlikely.                                                                                                                                |  |
| 0210000             | Root and tuber vegetables                           | 0.1*-0.5           | 0.05*              | The MRL proposal reflects the N<br>and SEU post-harvest, pre-sowi<br>pre-planting, pre-emergence,<br>inter-row use. Risk for consum                                                     |  |
| 0220000             | Bulb vegetables                                     | 0.1*               | 0.05*              |                                                                                                                                                                                         |  |
| 0230000             | Fruiting vegetables                                 | 0.1*-3             | 0.05*              | unlikely.                                                                                                                                                                               |  |
| 0240000             | Brassica<br>vegetables                              | 0.1*               | 0.05*              | The MRL proposal reflects the NEU<br>and SEU post-harvest, pre-sowing<br>pre-planting, pre-emergence use. Risk<br>for consumers unlikely.                                               |  |
| 0250000             | Leafy<br>vegetables,<br>herbs and edible<br>flowers | 0.1*               | 0.05*              | The MRL proposal reflects the NEU<br>and SEU post-harvest, pre-sowing<br>pre-planting, pre-emergence, and<br>inter-row use. Risk for consumers<br>unlikely.                             |  |
| 0260000             | Legume<br>vegetables                                | 0.1*               | 0.05*              | The MRL proposal reflects the NEU<br>and SEU inter-row use. Risk for<br>consumers unlikely.                                                                                             |  |
| 0270000             | Stem vegetables                                     | 0.1*               | 0.05*              | The MRL proposal reflects the NEU                                                                                                                                                       |  |
| 0900010             | Sugar beet roots                                    | 15                 | 0.05*              | and SEU post-harvest, pre-sow<br>pre-planting, pre-emergence use. If<br>for consumers unlikely.                                                                                         |  |
| MRL appli           | cation                                              |                    |                    |                                                                                                                                                                                         |  |
| 1040000             | Honey                                               | 0.05*              | -                  | The available data are not sufficient to<br>derive a MRL proposal. Based on the<br>available data, however, it is obvious                                                               |  |

## **Recommended MRLs**

| Code <sup>(a)</sup> | Commodity | Existing<br>EU MRL<br>(mg/kg) | Proposed<br>EU MRL<br>(mg/kg) | Comment/justification                                                                                     |
|---------------------|-----------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|
|                     |           |                               |                               | that the MRL in honey needs to be<br>raised to support the intended uses.<br>Risk for consumers unlikely. |

\*

Indicates that the MRL is set at the limit of analytical quantification (LOQ) Commodity code number according to Annex I of Regulation (EC) No 396/2005 Fat soluble

(a): (F):

### **Environmental fate and behaviour**

# Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.)

| Mineralisation after 100 days                                                                          | 16.9-70.6 % after 60-364 d ( $n^6 = 15$ )                                                                                                                            |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-extractable residues after 100 days                                                                | 2.5-21.6 % after 60-364 d (n = 15)                                                                                                                                   |
| Metabolites requiring further consideration<br>- name and/or code, % of applied (range and<br>maximum) | AMPA:<br>Laboratory: 42.4 % after 7 d (n= 15)<br>Field: 46.9% after 271 d (n=5)<br>Sterile conditions laboratory: max. 20.7 % after<br>70 d (still increasing, n= 1) |

# Route of degradation (anaerobic) in soil (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, point 7.1.1.2)

| Mineralisation after 100 days                                                                                                        | 12.5 % after 120 d (n= 1)         |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Non-extractable residues after 100 days                                                                                              | 22.5 % after 120 d (n=1)          |
| Metabolites that may require further<br>consideration for risk assessment - name<br>and/or code, % of applied (range and<br>maximum) | AMPA – 30.2 % AR after 84 d (n=1) |

# Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Mineralisation at study end

Non-extractable residues at study end

AMPA – 8.2 % AR after 7 d (n=1) (minor non transient) (6.1 % after 3 d in dark control)

14.6 % after 30 d (n= 1)

15.5 % after 30 d (n= 1)

<sup>&</sup>lt;sup>6</sup> n corresponds to the number of soils.

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU)  $N^\circ$  283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU)  $N^\circ$  284/2013, Annex Part A, point 9.1.1.1)

| Parent                | Dark aerobic conditions – Trigger endpoints |                        |                                            |                           |            |             |  |  |  |
|-----------------------|---------------------------------------------|------------------------|--------------------------------------------|---------------------------|------------|-------------|--|--|--|
| Soil                  | pH (H <sub>2</sub> O) t. °C / % MWHC        |                        | DT <sub>50</sub> /DT <sub>90</sub> Kinetic |                           | St.        | Method of   |  |  |  |
|                       | рн (н <sub>2</sub> О)                       | $1. \circ C / \%$ MWHC | (d)                                        | parameters                | $(\chi^2)$ | calculation |  |  |  |
| (2010):               |                                             |                        |                                            | k <sub>1</sub> : 0.2138   |            |             |  |  |  |
| Gartenacker           | 7.1                                         | 20 / 50 % pF2.5        | 8.8/57.3                                   | k <sub>2</sub> : 0.03023  | 2.9        | DFOP        |  |  |  |
| Loam                  |                                             | -                      |                                            | g: 0.4345                 |            |             |  |  |  |
| (2010):               |                                             |                        |                                            | 1 41 4                    |            |             |  |  |  |
| Drusenheim            | 7.4                                         | 20 / 50 % pF2.5        | 2.3 / 14.9                                 | α: 1.414                  | 4.2        | FOMC        |  |  |  |
| Loam                  |                                             | 1                      |                                            | β: 3.635                  |            |             |  |  |  |
| (2010):               |                                             |                        |                                            | k <sub>1</sub> : 0.3125   |            |             |  |  |  |
| Pappelacker           | 7.0                                         | 20 / 50 % pF2.5        | 3.9 / 38.7                                 | k <sub>2</sub> : 0.03172  | 5.0        | DFOP        |  |  |  |
| Loamy sand            |                                             | 1                      |                                            | g: 0.6584                 |            |             |  |  |  |
| (2010):               |                                             |                        |                                            | k <sub>1</sub> : 0.05856  |            |             |  |  |  |
| 18-Acres              | 5.7                                         | 20 / 50 % pF2.5        | 78.9 / 588                                 | k <sub>2</sub> : 0.003146 | 3.4        | DFOP        |  |  |  |
| Sandy clay loam       |                                             | 1                      |                                            | g: 0.3644                 |            |             |  |  |  |
| (1996):               |                                             |                        |                                            | k <sub>1</sub> : 2.306    |            |             |  |  |  |
| Soil B                | 6.7                                         | 25 / 75 % FC           | 0.7 / 16.2                                 | k <sub>2</sub> : 0.08875  | 8.2        | DFOP        |  |  |  |
| Sandy loam            |                                             |                        |                                            | g: 0.58                   |            |             |  |  |  |
| (1995):               |                                             |                        |                                            | 0.4520                    |            |             |  |  |  |
| Arrow                 | 6.4 <sup>a</sup>                            | 20 / 40                | 37.8 / 1660                                | α: 0.4539                 | 2.3        | FOMC        |  |  |  |
| Sandy loam            |                                             |                        |                                            | β: 10.47                  |            |             |  |  |  |
|                       |                                             |                        |                                            | 0.51                      |            |             |  |  |  |
| (1993): Les Evouettes | 6.1 <sup>b</sup>                            | 20 / 40                | 11.5 / 358                                 | α: 0.51                   | 5.9        | FOMC        |  |  |  |
| Silt loam             |                                             |                        |                                            | β: 3.96                   |            |             |  |  |  |
| (1993):               |                                             |                        |                                            | k <sub>1</sub> : 8.104    |            |             |  |  |  |
| Speyer 2.2            | 6.0 <sup>b</sup>                            | 20 / 40                | 2.0 / 151                                  | k <sub>2</sub> : 0.01078  | 8.6        | DFOP        |  |  |  |
| Sand                  |                                             |                        |                                            | g: 0.4893                 | 1          |             |  |  |  |
| (1993):               |                                             |                        |                                            |                           | 1          |             |  |  |  |
| Speyer 2.3            | 6.9 <sup>b</sup>                            | 20 / 40                | 6.2 / 20.4                                 | k: 0.1127                 | 8.0        | SFO         |  |  |  |
| Loamy sand            |                                             |                        |                                            |                           | 1          |             |  |  |  |
| (1992):               |                                             |                        |                                            | 1-1-0 2695                |            |             |  |  |  |
| Speyer 2.1,           | 6.9                                         | 20 / 40                | 0.01.62.7                                  | k1:0.3685                 | 07         | DEOD        |  |  |  |
| dose group A          | 0.9                                         | 20 / 40                | 9.0/ 63.7                                  | k2: 0.02889               | 9./        | DFOP        |  |  |  |
| Sand                  |                                             |                        |                                            | g: 0.3702                 |            |             |  |  |  |

<sup>a</sup> Calculated with equation reported in EFSA guidance 2017<sup>7</sup>: pH<sub>H2O</sub>=0.982pH<sub>CaCl2</sub> + 0.648.

<sup>b</sup> Medium not reported, H<sub>2</sub>O assumed

For modelling endpoints of glyphosate, two datasets are presented:

- Endpoints derived from parent-only fits;
- Endpoints derived from pathway fits (glyphosate  $\rightarrow$  AMPA).

| Parent                         |                          | Dark aero             | Dark aerobic conditions – Modelling endpoints based on parent-only fits |                                                                |                                                         |                                               |                          |                       |  |  |  |
|--------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|--------------------------|-----------------------|--|--|--|
| Soil                           | pH<br>(H <sub>2</sub> O) | t. °C / %<br>MWHC     | Actual<br>DT <sub>50</sub><br>/DT <sub>90</sub> (d)                     | Modelling<br>DT <sub>50</sub> (not<br>normalized) <sup>a</sup> | DT <sub>50</sub> (d)<br>20 °C<br>pF2/10kPa <sup>b</sup> | DT 90° (d)<br>20 °C<br>pF2/10kPa <sup>a</sup> | St.<br>(χ <sup>2</sup> ) | Method of calculation |  |  |  |
| (2010):<br>Gartenacker<br>Loam | 7.1                      | 20 /<br>50 %<br>pF2.5 | 9.0/60                                                                  | 18.1                                                           | 9.9                                                     | 32.0                                          | 4.0                      | FOMC                  |  |  |  |
| (2010):<br>Drusenheim<br>Loam  | 7.4                      | 20 /<br>50 %<br>pF2.5 | 2.3/15                                                                  | 4.5                                                            | 2.2                                                     | 7.2                                           | 4.2                      | FOMC                  |  |  |  |
| (2010):                        | 7.0                      | 20 /                  | 4.0/37                                                                  | 11.1                                                           | 5.1                                                     | 17.0                                          | 4.5                      | FOMC                  |  |  |  |

<sup>7</sup> EFSA (European Food Safety Authority), 2017. EFSA Guidance Document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2017;15(10):4982, 115 pp. https://doi.org/10.2903/j.efsa.2017.4982

| Pappelacker<br>Loamy sand                      |                                                       | 50 %<br>pF2.5         |          |       |       |       |     |      |
|------------------------------------------------|-------------------------------------------------------|-----------------------|----------|-------|-------|-------|-----|------|
| (2010):<br>18-Acres<br>Sandy clay loam         | 5.7                                                   | 20 /<br>50 %<br>pF2.5 | 76.3/523 | 192.6 | 109.8 | 298.1 | 2.6 | DFOP |
| (1996):<br>Soil B<br>Sandy loam                | 6.7                                                   | 25 /<br>75 % FC       | 1.0/20.1 | 6.1   | 6.5   | 21.7  | 8.6 | FOMC |
| (1995):<br>Arrow<br>Sandy loam                 | 6.4°                                                  | 20 / 40               | 37.4/440 | 187.3 | 161.1 | 378.4 | 3.6 | DFOP |
| (1993):<br>Les Evouettes<br>Silt loam          | 6.1 <sup>d</sup>                                      | 20 / 40               | 11.5/358 | 107.8 | 71.2  | 236.3 | 5.9 | FOMC |
| (1993):<br>Speyer 2.2<br>Sand                  | 6.0 <sup>d</sup>                                      | 20 / 40               | 2.0/151  | 64.3  | 44.4  | 104.2 | 8.6 | DFOP |
| (1993):<br>Speyer 2.3<br>Loamy sand            | 6.9 <sup>d</sup>                                      | 20 / 40               | 6.1/20.3 | 6.1   | 3.2   | 10.8  | 8.0 | SFO  |
| (1992):<br>Speyer 2.1,<br>dose group A<br>Sand | 6.9                                                   | 20 / 40               | 6.0/165  | 49.7  | 49.7  | 165.0 | 6.8 | FOMC |
| pH dependence                                  | Yes, glyphosate is more persistent with decreasing pH |                       |          |       |       |       |     |      |

<sup>a</sup> DT90/3.32 for FOMC kinetics; ln(2)/k2 value for DFOP kinetics <sup>b</sup> Normalised using a Q<sub>10</sub> of 2.58 and Walker equation coefficient of 0.7 <sup>c</sup> Calculated with equation reported in EFSA guidance 2017<sup>4</sup>: pH<sub>H2O</sub>=0.982pH<sub>CaCl2</sub> + 0.648. <sup>d</sup> Medium not reported, H<sub>2</sub>O assumed

<sup>e</sup> Modelling DT90 also reported since it is used to assess pH-dependency

| Parent                                 | Dark aerobic conditions – Modelling endpoints based on pathway fit (glyphosate $\rightarrow$ AMPA) |                    |                                              |                                                                       |                                                                        |                                                           |                       |                       |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------|--|--|
| Soil                                   | pH<br>(H <sub>2</sub> O)                                                                           | t. °C / %<br>MWHC  | DT <sub>50</sub><br>/DT <sub>90</sub><br>(d) | Kinetic<br>parameters                                                 | Fast   Slow<br>DT <sub>50</sub> (d)<br>20 °C<br>pF2/10kPa <sup>a</sup> | DT 90 <sup>d</sup> (d)<br>20 °C<br>pF2/10kPa <sup>a</sup> | St. (χ <sup>2</sup> ) | Method of calculation |  |  |
| Gartenacker<br>Loam                    | 7.1                                                                                                | 20 / 50 %<br>pF2.5 | 8.8 /<br>57.3                                | k <sub>1</sub> : 0.2138<br>k <sub>2</sub> : 0.03023<br>g: 0.4345      | 1.8   12.6                                                             | 31.5                                                      | 2.9                   | DFOP                  |  |  |
| (2010):<br>Drusenheim<br>Loam          | 7.4                                                                                                | 20 / 50 %<br>pF2.5 | 2.3 /<br>13.4                                | k <sub>1</sub> : 0.9889<br>k <sub>2</sub> : 0.1375<br>g: 0.3704       | 0.3   2.4                                                              | 6.4                                                       | 4.8                   | DFOP                  |  |  |
| (2010):<br>Pappelacker<br>Loamy sand   | 7.0                                                                                                | 20 / 50 %<br>pF2.5 | 3.9 /<br>38.7                                | k <sub>1</sub> : 0.3125<br>k <sub>2</sub> : 0.03172<br>g: 0.6584      | 1.0   10.1                                                             | 17.8                                                      | 5.0                   | DFOP                  |  |  |
| (2010):<br>18-Acres<br>Sandy clay loam | 5.7                                                                                                | 20 / 50 %<br>pF2.5 | 78.6 /<br>588                                | k <sub>1</sub> : 0.05856<br>k <sub>2</sub> :<br>0.003146<br>g: 0.3644 | 6.7   125.6                                                            | 335.2                                                     | 3.4                   | DFOP                  |  |  |
| Soil B<br>Sandy loam                   | 6.7                                                                                                | 25 / 75 %<br>FC    | 0.7 /<br>16.2                                |                                                                       | 0.3   8.4                                                              | 17.5                                                      | 8.2                   | DFOP                  |  |  |

| (1995):<br>Arrow<br>Sandy loam                 | 6.4 <sup>b</sup> | 20 / 40 | 37.4 /<br>440 | k <sub>1</sub> : 0.0595<br>k <sub>2</sub> : 0.0037<br>g: 0.4852      | 10.0   161.1                                          | 378.4 | 4.7 | DFOP |
|------------------------------------------------|------------------|---------|---------------|----------------------------------------------------------------------|-------------------------------------------------------|-------|-----|------|
| (1993):<br>Les Evouettes<br>Silt loam          | 6.1°             | 20 / 40 | 9.8 /<br>192  | k <sub>1</sub> : 0.2084<br>k <sub>2</sub> :<br>0.008013<br>g: 0.5339 | 2.2   57.1                                            | 126.7 | 6.3 | DFOP |
| (1993):<br>Speyer 2.2<br>Sand                  | 6.0°             | 20 / 40 | 2.0 /<br>151  | k <sub>1</sub> : 8.104<br>k <sub>2</sub> : 0.01078<br>g: 0.4893      | 0.1   44.4                                            | 104.2 | 8.6 | DFOP |
| (1993):<br>Speyer 2.3<br>Loamy sand            | 6.9°             | 20 / 40 | 6.2 /<br>20.4 | k: 0.1127                                                            | 3.3                                                   | 10.8  | 8.0 | SFO  |
| (1992):<br>Speyer 2.1,<br>dose group A<br>Sand | 6.9              | 20 / 40 | 9.0 /<br>63.7 | k <sub>1</sub> :0.3685<br>k <sub>2</sub> : 0.02889<br>g: 0.3702      | 1.9   24.0                                            | 63.7  | 9.7 | DFOP |
| pH dependence                                  |                  |         |               |                                                                      | Yes, glyphosate is more persistent with decreasing pH |       |     |      |

<sup>a</sup> Normalised using a Q<sub>10</sub> of 2.58 and Walker equation coefficient of 0.7

<sup>b</sup> Calculated with equation reported in EFSA guidance  $2017^8$ : pH<sub>H2O</sub>=0.982pH<sub>CaCl2</sub> + 0.648.

<sup>c</sup> Medium not reported, H<sub>2</sub>O assumed

<sup>d</sup> Modelling DT90 also reported since it is used to assess pH-dependency

| 283/2013, Annex Pa | art A, point 7.1                                                                              | 1.2.1.2 and Ke | gulation (EU)                       | ) IN 284/            | 2015, Annex I | rart A, p  | oint 9.1.1.1) |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|----------------|-------------------------------------|----------------------|---------------|------------|---------------|--|--|--|--|
| AMPA               | Trigger endpoints                                                                             |                |                                     |                      |               |            |               |  |  |  |  |
|                    | Dark aerobic conditions Metabolite dosed or the precursor from which the f f. was derived was |                |                                     |                      |               |            |               |  |  |  |  |
|                    | glyphosate                                                                                    |                |                                     |                      |               |            |               |  |  |  |  |
| Soil               |                                                                                               | t. °C / %      | DT <sub>50</sub> / DT <sub>90</sub> | f. f. k <sub>f</sub> | Kinetic       | St.        | Method of     |  |  |  |  |
|                    | pH (H <sub>2</sub> O)                                                                         | MWHC           | (d)                                 | /k <sub>dp</sub>     | parameters    | $(\chi^2)$ | calculation   |  |  |  |  |
| (2010):            |                                                                                               | 20 / 50 0/     |                                     |                      | •             |            |               |  |  |  |  |
| Gartenacker        | 7.1                                                                                           | 20 / 50 %      | 112/373                             | 0.1955               | k: 0.006181   | 7.6        | SFO           |  |  |  |  |
| Loam               | //1                                                                                           | pF2.5          | 112,0,0                             | 0.1700               |               |            | 210           |  |  |  |  |
| (2010):            |                                                                                               |                |                                     |                      |               |            |               |  |  |  |  |
| Drusenheim         | 7.4                                                                                           | 20 / 50 %      | 28.6/95.1                           | 0.3000               | k: 0.02421    | 3.5        | SFO           |  |  |  |  |
| Loam               | 7.4                                                                                           | pF2.5          | 20.07 75.1                          | 0.5000               | K. 0.02421    | 5.5        | 51 0          |  |  |  |  |
|                    |                                                                                               |                |                                     |                      | -             |            |               |  |  |  |  |
| (2010):            | 7.0                                                                                           | 20 / 50 %      | 00 0 / 000                          | 0.0004               | 1 0 0070 (2   | 6.0        | aro.          |  |  |  |  |
| Pappelacker        | 7.0                                                                                           | pF2.5          | 88.2 / 293                          | 0.2004               | k: 0.007863   | 6.2        | SFO           |  |  |  |  |
| Loamy sand         |                                                                                               | r ···          |                                     |                      |               |            |               |  |  |  |  |
| (2010):            |                                                                                               | 20 / 50 %      |                                     |                      |               |            |               |  |  |  |  |
| 18-Acres           | 5.7                                                                                           | pF2.5          | 1000 / 3320                         | 0.2618               | k: 0.00069    | 9.2        | SFO           |  |  |  |  |
| Sandy clay loam    |                                                                                               | pr-2.5         |                                     |                      |               |            |               |  |  |  |  |
| (1996):            |                                                                                               | 25 / 75 0/     |                                     |                      |               |            |               |  |  |  |  |
| Soil B             | 6.7                                                                                           | 25 / 75 %      | 96.4 / 320                          | 0.2793               | k: 0.007187   | 10.1       | SFO           |  |  |  |  |
| Sandy loam         |                                                                                               | FC             |                                     |                      |               |            |               |  |  |  |  |
|                    |                                                                                               |                |                                     |                      |               |            |               |  |  |  |  |
| (1993):            | 6.9ª                                                                                          | 20 / 40        | 70 2 / 262                          | 0.2406               | 1 0 009752    | 0 1        | SEO           |  |  |  |  |
| Speyer 2.3         | 0.9"                                                                                          | 20 / 40        | 79.2 / 263                          | 0.3406               | k: 0.008753   | 8.2        | SFO           |  |  |  |  |
| Loamy sand         |                                                                                               |                |                                     |                      |               |            |               |  |  |  |  |

# Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

<sup>&</sup>lt;sup>8</sup> EFSA (European Food Safety Authority), 2017. EFSA Guidance Document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2017;15(10):4982, 115 pp. https://doi.org/10.2903/j.efsa.2017.4982

| АМРА                                           | Trigger endpoints<br>Dark aerobic conditions Metabolite dosed or the precursor from which the f f. was derived was<br>glyphosate |                   |                                            |                                          |                    |                |                       |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------------------------------------|--------------------|----------------|-----------------------|--|--|
| Soil                                           | pH (H <sub>2</sub> O)                                                                                                            | t. °C / %<br>MWHC | DT <sub>50</sub> / DT <sub>90</sub><br>(d) | f. f. k <sub>f</sub><br>/k <sub>dp</sub> | Kinetic parameters | St. $(\chi^2)$ | Method of calculation |  |  |
| (1992):<br>Speyer 2.1,<br>dose group A<br>Sand | 6.9                                                                                                                              | 20 / 40           | 200 / 666                                  | 0.4796                                   | k: 0.003459        | 3.2            | SFO                   |  |  |
| (2017):<br>Warsop<br>Loamy sand                | 4.71                                                                                                                             | 20 / pF 2         | 326 / 1080                                 | -                                        | k: 0.002128        | 1.3            | SFO                   |  |  |
| , 2020:<br>18-Acres<br>Sandy clay loam         | 5.5                                                                                                                              | 20 / pF 2         | 1040 / 3450                                | -                                        | k: 0.000666        | 3.0            | SFO                   |  |  |
| 2020:<br>Brierlow,<br>Silt loam                | 5.7                                                                                                                              | 20 / pF 2         | 1000 / 3320                                | -                                        | k: 0.000693        | 3.2            | SFO                   |  |  |

<sup>a</sup> Medium not reported, H<sub>2</sub>O assumed

| АМРА                                           | Modelling endpoints<br>Dark aerobic conditions Metabolite dosed or the precursor from which the f.f. was derived was<br>glyphosate |                    |                                            |                           |                                                          |                          |                       |  |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|---------------------------|----------------------------------------------------------|--------------------------|-----------------------|--|--|--|
| Soil                                           | pH (H <sub>2</sub> O)                                                                                                              | t. °C / %<br>MWHC  | DT <sub>50</sub> / DT <sub>90</sub><br>(d) | f. f. $k_f$<br>/ $k_{dp}$ | DT <sub>50</sub> (d)<br>20 °C<br>pF2/10kPa <sup>b)</sup> | St.<br>(χ <sup>2</sup> ) | Method of calculation |  |  |  |
| Gartenacker<br>Loam                            | 7.1                                                                                                                                | 20 / 50 %<br>pF2.5 | 112 / 373                                  | 0.1955                    | 61.6                                                     | 7.6                      | SFO                   |  |  |  |
| (2010):<br>Drusenheim<br>Loam                  | 7.4                                                                                                                                | 20 / 50 %<br>pF2.5 | 28.6 / 95.1                                | 0.3000                    | 13.4                                                     | 3.9                      | SFO                   |  |  |  |
| (2010):<br>Pappelacker<br>Loamy sand           | 7.0                                                                                                                                | 20 / 50 %<br>pF2.5 | 88.2 / 293                                 | 0.2004                    | 40.6                                                     | 6.2                      | SFO                   |  |  |  |
| (2010):<br>18-Acres<br>Sandy clay loam         | 5.7                                                                                                                                | 20 / 50 %<br>pF2.5 | 1000 / 3320                                | 0.2618                    | 570                                                      | 9.2                      | SFO                   |  |  |  |
| Soil B<br>Sandy loam                           | 6.7                                                                                                                                | 25 / 75 %<br>FC    | 96.4 / 320                                 | 0.2793                    | 104                                                      | 10.1                     | SFO                   |  |  |  |
| (1993):<br>Speyer 2.3<br>Loamy sand            | 6.9ª                                                                                                                               | 20 / 40            | 79.2 / 263                                 | 0.3406                    | 42                                                       | 8.2                      | SFO                   |  |  |  |
| (1992):<br>Speyer 2.1,<br>dose group A<br>Sand | 6.9                                                                                                                                | 20 / 40            | 200 / 666                                  | 0.4796                    | 200                                                      | 3.2                      | SFO                   |  |  |  |
| (2017):<br>Warsop<br>Loamy sand                | 4.71                                                                                                                               | 20 / pF 2          | 326 / 1080                                 | -                         | 326                                                      | 1.6                      | SFO                   |  |  |  |
| 2020:<br>18-Acres<br>Sandy clay loam           | 5.5                                                                                                                                | 20 / pF 2          | 1040 / 3450                                | -                         | 1040                                                     | 3.0                      | SFO                   |  |  |  |

| АМРА                            | Modelling endpoints<br>Dark aerobic conditions Metabolite dosed or the precursor from which the f.f. was derived was<br>glyphosate |                   |                                                 |                                           |                                                          |                |                       |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------|-----------------------|--|--|--|
| Soil                            | рН (H <sub>2</sub> O)                                                                                                              | t. °C / %<br>MWHC | DT <sub>50</sub> / DT <sub>90</sub><br>(d)      | f. f. k <sub>f</sub><br>/ k <sub>dp</sub> | DT <sub>50</sub> (d)<br>20 °C<br>pF2/10kPa <sup>b)</sup> | St. $(\chi^2)$ | Method of calculation |  |  |  |
| 2020:<br>Brierlow,<br>Silt loam | 5.7                                                                                                                                | 20 / pF 2         | 1000 / 3320                                     | -                                         | 1000                                                     | 3.2            | SFO                   |  |  |  |
| Mean value (n=7)                |                                                                                                                                    |                   |                                                 | 0.29                                      |                                                          |                |                       |  |  |  |
| pH dependence                   |                                                                                                                                    |                   | Yes, AMPA is more persistent with decreasing pH |                                           |                                                          |                |                       |  |  |  |

<sup>a</sup> Medium not reported, H<sub>2</sub>O assumed

### Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

| Parent                 | Aerobic cond | litions          | - trigger e | ndpoints                            |                         |            |             |
|------------------------|--------------|------------------|-------------|-------------------------------------|-------------------------|------------|-------------|
| Soil                   | Location     | pН               | Depth       | DT <sub>50</sub> / DT <sub>90</sub> | Kinetic                 | St.        | Method of   |
|                        |              |                  | (cm)        | (d)                                 | parameters              | $(\chi^2)$ | calculation |
|                        |              |                  |             | actual                              |                         |            |             |
| Egerkingen             | Switzerland  | 7.79             | 0-30        | 1.1 / 179                           | k1: 2.653               | 5.3        | DFOP        |
| (1992b)                |              | а                |             |                                     | k <sub>2</sub> : 0.0087 |            |             |
| Clay loam (bare soil)  |              |                  |             |                                     | g: 0.5228               |            |             |
| Bad Krozingen          | Germany      | 6.6 <sup>a</sup> | 0-30        | 2.7 / 122                           | α: 0.45                 |            | FOMC        |
| (1992c)                |              |                  |             |                                     | β: 0.7373               | 5.3        |             |
| Sandy loam (bare soil) |              |                  |             |                                     | p. 0.7575               |            |             |
| Menslage               | Germany      | 5.6 <sup>a</sup> | 0-30        | 5.8 / 201                           | k1: 0.1781              | 9.4        | DFOP        |
| (1992d)                |              |                  |             |                                     | k <sub>2</sub> : 0.0041 |            |             |
| Sand (bare soil)       |              |                  |             |                                     | g: 0.7704               |            |             |
| Ontario                | Canada       | 6.8 <sup>b</sup> | 0-45        | 13.7 / 54.4                         | k1: 0.0551              | 22.3       | DFOP        |
|                        |              |                  |             |                                     | k <sub>2</sub> : 0.0017 |            |             |
| (1993)                 |              |                  |             |                                     | g: 0.9420               |            |             |
| Loamy sand (bare soil) |              |                  |             |                                     |                         |            |             |
| California             | USA          | 6.3 <sup>b</sup> | 0-121.9     | 13.0 / 102                          | k1: 0.1124              |            | DFOP        |
| (1993a)                |              |                  |             |                                     | k <sub>2</sub> : 0.0148 | 12.7       |             |
| Loamy sand (bare soil) |              |                  |             |                                     | g: 0.5490               |            |             |
| Ohio                   | USA          | 7.8 <sup>b</sup> | 0-121.9     | 2.4 / 61.5                          | k1: 0.5430              | 13.3       | DFOP        |
| (1993a)                |              |                  |             |                                     | k <sub>2</sub> : 0.0194 |            |             |
| Loam (bare soil)       |              |                  |             |                                     | g: 0.6704               |            |             |

<sup>a)</sup> Measured in KCl in the study, converted to  $pH_{H2O}$  considering the formula  $pH_{H2O} = 0.860 pH_{KCl} + 1.482$  presented in the EFSA guidance for predicting environmental concentration in soil (2017) <sup>b)</sup> Medium not given – value from the 0-15 cm depth layer

| Parent           | Aerobic co | onditi   | ons – mo | delling en          | dpoints                 |                      |            |                       |
|------------------|------------|----------|----------|---------------------|-------------------------|----------------------|------------|-----------------------|
| Soil             | Location.  | pН       | Depth    | DT <sub>50</sub>    | Kinetic                 | DT <sub>90</sub> (d) | St.        | Method of calculation |
|                  |            |          | (cm)     | (d)                 | parameters              | Norm <sup>b</sup> .  | $(\chi^2)$ |                       |
|                  |            |          |          | Norm <sup>b</sup> . |                         |                      |            |                       |
| Menslage         | Germany    | 5.6      | 0-30     | 46.0                | k <sub>2</sub> : 0.0151 | -                    | 6.8        | HS – slow phase       |
| (1992d)          |            | а        |          |                     |                         |                      |            |                       |
| Sand (bare soil) |            |          |          |                     |                         |                      |            |                       |
| California       |            |          |          |                     |                         |                      |            |                       |
|                  |            | 6.3      |          |                     |                         |                      |            |                       |
| (1993)           | USA        | 0.5<br>c | 0-121.9  | 32.6                | k: 0.0213               | 108                  | 22.0       | SFO                   |
| Loamy sand       |            |          |          |                     |                         |                      |            |                       |
| (bare soil)      |            |          |          |                     |                         |                      |            |                       |

| Parent           | Aerobic co | onditi | ons – mo | delling er          | dpoints                 |                      |            |                          |
|------------------|------------|--------|----------|---------------------|-------------------------|----------------------|------------|--------------------------|
| Soil             | Location.  | pН     | Depth    | DT <sub>50</sub>    | Kinetic                 | DT <sub>90</sub> (d) | St.        | Method of calculation    |
|                  |            |        | (cm)     | (d)                 | parameters              | Norm <sup>b</sup> .  | $(\chi^2)$ |                          |
|                  |            |        |          | Norm <sup>b</sup> . |                         |                      |            |                          |
| Menslage         | Germany    | 5.6    | 0-30     | 46.0                | k <sub>2</sub> : 0.0151 | -                    | 6.8        | HS – slow phase          |
| (1992d)          |            | a      |          |                     |                         |                      |            |                          |
| Sand (bare soil) |            |        |          |                     |                         |                      |            |                          |
| New York         |            |        |          |                     |                         |                      |            |                          |
|                  |            |        |          |                     |                         |                      |            | Data gap, further fits   |
| (1993)           | USA        | 5.8    | 0-121.9  |                     |                         |                      |            | required (following EFSA |
| Sandy clay loam  |            |        |          |                     |                         |                      |            | DegT50 flowchart)        |
| (bare soil)      |            |        |          |                     |                         |                      |            |                          |

<sup>a)</sup> Measured in KCl in the study, converted to  $pH_{H2O}$  considering the formula  $pH_{H2O} = 0.860pH_{KCl} + 1.482$  presented in the EFSA guidance for predicting environmental concentration in soil (2017)

<sup>b)</sup>Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

<sup>c)</sup> Medium not given – value from the 0-15 cm depth layer

### Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

| AMPA                                              | Trigger<br>endpoints |                   | Aerobic conditions Metabolite dosed or the precursor from which the f f. was<br>erived was glyphosate |                             |                                |                                                       |                                           |                                 |  |
|---------------------------------------------------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|--|
| Soil                                              | Location             | рН<br>(H2O)       | Depth<br>(cm)                                                                                         | DT <sub>50</sub> (d) actual | DT <sub>90</sub> (d)<br>actual | $\begin{array}{c} \text{St.} \\ (\chi^2) \end{array}$ | f. f. k <sub>f</sub><br>/ k <sub>dp</sub> | Method of calculation           |  |
| Egerkingen<br>(1992b)<br>Clay loam (bare<br>soil) | Germany              | 7.79 <sup>a</sup> | 0-30                                                                                                  |                             |                                |                                                       |                                           | Data gap for fit<br>from parent |  |
| Ohio<br>(1993)<br>Loam (bare soil)                | USA                  | 7.8 <sup>b</sup>  | 0-121.9                                                                                               |                             |                                |                                                       |                                           | Data gap for<br>decline fit     |  |

<sup>a)</sup> Measured in KCl in the study, converted to  $pH_{H2O}$  considering the formula  $pH_{H2O} = 0.860 pH_{KCl} + 1.482$  presented in the EFSA guidance for predicting environmental concentration in soil (2017)

<sup>b)</sup> Medium not given – value from the 0-15 cm depth layer

# Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)

Kinetic formation fraction (f. f.  $k_f / k_{dp}$ ) of transformation products, arithmetic mean

Laboratory and field data can be pooled, however no geomean is determined due to pH dependence

No modelling field value for AMPA

No modelling field value for AMPA

# Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Refer to PECaccumulation calculations

# Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) $N^\circ$ 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) $N^\circ$ 284/2013, Annex Part A, point 9.1.1.1)

| Parent     | Dark a           | Dark anaerobic conditions |                                         |                                          |     |                       |  |  |  |  |  |
|------------|------------------|---------------------------|-----------------------------------------|------------------------------------------|-----|-----------------------|--|--|--|--|--|
| Soil type  | pH <sup>a)</sup> | t. °C / % MWHC            | DT <sub>50</sub> / DT <sub>90</sub> (d) | DT <sub>50</sub> (d) 20 °C <sup>b)</sup> |     | Method of calculation |  |  |  |  |  |
| Sandy loam | 5.9              | 20°C, flooded             | > 1000                                  | -                                        | 1.6 | DFOP                  |  |  |  |  |  |

<sup>a)</sup> Measured inKCl

<sup>b)</sup> Normalised using a Q10 of 2.58

|                                                  | 1         | T                          | T                     | r                        | Γ                            | Т                  | T                            | 1     |
|--------------------------------------------------|-----------|----------------------------|-----------------------|--------------------------|------------------------------|--------------------|------------------------------|-------|
| Soil Type                                        | OC<br>(%) | pH<br>(CaCl <sub>2</sub> ) | pH (H <sub>2</sub> O) | K <sub>D</sub><br>(mL/g) | K <sub>D, OC</sub><br>(mL/g) | $K_{\rm F} (mL/g)$ | K <sub>F, OC</sub><br>(mL/g) | 1/n   |
| Speyer 2.2, sandy loam                           | 1.71      | 5.6                        | 5.21                  | -                        | -                            | 59.44              | 3476                         | 0.546 |
| RefeSol 01-A,<br>loamy sand                      | 0.8       | 5.33                       | 6.11                  | -                        | -                            | 59.80              | 7476                         | 0.704 |
| 18 Acres,<br>sandy clay<br>loam                  | 1.9       | 6.2                        | 6.11                  | -                        | -                            | 166.4              | 8755                         | 0.579 |
| M-SL-PF<br>(Mutchler,<br>US), sandy<br>clay loam | 1.9       | 6.1                        | 6.44                  | -                        | -                            | 152.4              | 8024                         | 0.546 |
| Speyer 2.3, sandy loam                           | 0.67      | 5.9                        | 7.02                  | -                        | -                            | 52.9               | 7892                         | 0.751 |
| RefeSol 02-A,<br>silt loam                       | 0.92      | 6.19                       | 6.98                  | -                        | -                            | 88.46              | 9615                         | 0.658 |
| Gartenacker,<br>loam                             | 2.1       | 7.1                        | 7.16                  | -                        | -                            | 21.6               | 1031                         | 0.757 |
| Speyer 6S,<br>clay                               | 1.78      | 7.2                        | 7.32                  | -                        | -                            | 70.52              | 3962                         | 0.736 |
| Speyer 5M,<br>sandy loam                         | 0.92      | 7.4                        | 7.56                  | -                        | -                            | 18.9               | 2049                         | 0.770 |
| LAD-SL-PF<br>(Pavillion,<br>US), sandy<br>loam   | 0.87      | 8.1                        | 8.11                  | -                        | -                            | 18.1               | 2082                         | 0.777 |
| Geometric mean                                   | 54.23     | 4348                       | -                     |                          |                              |                    |                              |       |
| Arithmetic mean                                  |           | -                          | -                     | 0.682                    |                              |                    |                              |       |
| pH dependence                                    |           | No                         |                       |                          |                              |                    |                              |       |

### Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Soil Type              | OC<br>(%) | pH<br>(CaCl <sub>2</sub> ) | pH (H <sub>2</sub> O) | K <sub>D</sub><br>(mL/g) | K <sub>D, OC</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>F, OC</sub><br>(mL/g) | 1/n   |
|------------------------|-----------|----------------------------|-----------------------|--------------------------|------------------------------|--------------------------|------------------------------|-------|
| RefeSol 02-A<br>Silt   | 1.18      | 6.60                       | 7.25                  | -                        | -                            | 38.9                     | 3299                         | 0.707 |
| LUFA 2.2<br>Sandy loam | 1.48      | 5.70                       | 6.33                  | -                        | -                            | 41.9                     | 2833                         | 0.752 |

| LUFA 2.3<br>Sandy loam    | 0.61          | 6.20             | 7.01  | - | - | 28.7 | 4709 | 0.721 |  |
|---------------------------|---------------|------------------|-------|---|---|------|------|-------|--|
| LUFA 6S<br>Clay loam      | 2.07          | 7.30             | 7.89  | - | - | 36.6 | 1769 | 0.825 |  |
| Bourgfelden<br>Silt loam  | 1.15          | 7.50             | 8.41  | - | - | 23.3 | 2032 | 0.713 |  |
| Wurmwiese<br>Sandy loam   | 2.00          | 5.00             | 5.20  | - | - | 33.5 | 1675 | 0.875 |  |
| SLI Soil #4,<br>sand      | 1.34          | 6.9 <sup>1</sup> | 7.4   | - | - | 15.7 | 1160 | 0.752 |  |
| SLI Soil #5,<br>clay loam | 0.93          | 7.1 <sup>1</sup> | 7.6   | - | - | 53.9 | 5650 | 0.791 |  |
| Geometric mean            | n (if not     | 29.8             | 2541  | - |   |      |      |       |  |
| Arithmetic mean           | -             | -                | 0.767 |   |   |      |      |       |  |
| pH dependence             | pH dependence |                  |       |   |   |      |      |       |  |

<sup>1</sup> Calculated with equation reported in EFSA guidance 2017: pH<sub>H2O</sub>=0.982pH<sub>CaCl2</sub> + 0.648.

a)

# Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Aged residues leaching

No reliable column leaching study, not required

Soil type: sand Aged for: 8d Elution (mm): 200 mm CaCl<sub>2</sub> solution over 48 h Leachate:  $\leq 0.1$  % AR glyphosate Soil (top 6 cm): 69.6-71.8 % AR glyphosate, 24.2-24.6 % AR AMPA

# Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

No column leaching studies with metabolites submitted, not required

b)

# Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

No lysimeter or field leaching studies submitted, not required

#### Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1

Hydrolytic degradation of the active substance and metabolites > 10 %

Stable at pH 4, 5, 7 and 9

# Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

| Photolytic degradation of active substance and metabolites above 10 %            | Direct photolysis<br>Stable in sterile distilled water (12 days of continuous<br>irradiation) and in buffer solutions (pH 5, 7 and 9) under<br>natural sunlight<br>Slow degradation in aqueous solutions (pH 5.1, 7.3, 9.2)<br>Metabolite: AMPA (max. after 15 days):16.0 % (pH 5.1)<br>Data gap to determine DT50 |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Quantum yield of direct phototransformation<br>in water at $\mathbb{P} > 290$ nm | Indirect photolysis<br>Rapid degradation in natural water.<br>Data gap to update DT50.<br>Metabolites: AMPA (max. 19.6% after 12 days),<br>methanediol (max. 52% after 12 days)<br>No determination of the quantum yield was performed.                                                                            |  |  |  |  |

### 'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

| Readily  | biodegradable |
|----------|---------------|
| (yes/no) |               |

No

# Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

| Glyphosate                                             |                   |                      |                     |                                                                       |                                                                          |                          |                       |
|--------------------------------------------------------|-------------------|----------------------|---------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|-----------------------|
| Suspended<br>sediment test –<br>natural fresh<br>mater | pH<br>water phase | pH sed <sup>a)</sup> | t. °C <sup>b)</sup> | DT <sub>50</sub> (days)<br>whole sys.<br>(suspended<br>sediment test) | DT <sub>90</sub> (days)<br>whole sys.<br>(suspended<br>sediment<br>test) | St.<br>(χ <sup>2</sup> ) | Method of calculation |
| Calwich Abbey (10 µg/L)                                | 8.2               | 7.6                  | 20                  | 12.3                                                                  | 41.0                                                                     | 8.4                      | SFO                   |
| Calwich Abbey<br>(95 µg/L)                             | 8.2               | 7.6                  | 20                  | 21.8                                                                  | 72.4                                                                     | 5.2                      | SFO                   |

<sup>a)</sup> Measured in water

| Mineralisation and non-extractable residues (for parent dosed experiments) |                      |           |                                            |                                                                                    |                                                                                                        |  |  |
|----------------------------------------------------------------------------|----------------------|-----------|--------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| System identifier<br>(indicate fresh,<br>estuarine or<br>marine)           | pH<br>water<br>phase | pH<br>sed | Mineralisation                             | Non-extractable<br>residues. max $x %$<br>after $n$ d (suspended<br>sediment test) | Non-extractable<br>residues. max $x$ % after<br>n d (end of the study)<br>(suspended sediment<br>test) |  |  |
| Calwich Abbey<br>(10 µg/L)                                                 | 8.2                  | 7.6       | 26.5 % after 62 days<br>(end of the study) | 14.0 % after 62 days<br>(end of the study)                                         | 14.0 % after 62 days (end of the study)                                                                |  |  |

| Calwich Abbey<br>(95 µg/L) | 8.2 | 7.6 | 23.1 after 62 days<br>(end of the study) | 9.1 % after 44 days | 8.8 % after 62 days (end of the study) |
|----------------------------|-----|-----|------------------------------------------|---------------------|----------------------------------------|
|----------------------------|-----|-----|------------------------------------------|---------------------|----------------------------------------|

# Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

#### Glyphosate Trigger endpoints

| Glyphosate                    | Distribution:     | Max in sedi | ment: 61.4 | % after 7 da                      | iys (system Un                    | ter Widdershei                  | m)                                     |
|-------------------------------|-------------------|-------------|------------|-----------------------------------|-----------------------------------|---------------------------------|----------------------------------------|
| Water /<br>sediment<br>system | pH water<br>phase | pH sed      | t. (°C)    | DT <sub>50</sub> (d) <sup>1</sup> | DT <sub>90</sub> (d) <sup>1</sup> | St. (χ <sup>2</sup> err)<br>(%) | Kinetic model                          |
| Total system                  | -                 |             | 24         |                                   | 7.0                               |                                 |                                        |
| Cache                         | 8.2               | 8.1         | 20         | 8.4                               | 45.6                              | 2.7                             | FOMC                                   |
| Putah                         | 8.4               | 7.5         | 20         | 195.8                             | 902.3                             | 4.4                             | DFOP                                   |
| Bickenbach                    | 8.6               | 7.8         | 20         | 15.8                              | 329.4                             | 2.2                             | HS                                     |
| Unter<br>Widdersheim          | 8.6               | 7.68        | 20         | 121.6                             | >1000                             | 4.8                             | DFOP                                   |
| Water phase                   |                   |             |            |                                   |                                   |                                 |                                        |
| Cache                         | 8.2               | 8.1         | 20         | 5.0                               | 22.7                              | 2.3                             | DFOP                                   |
| Putah                         | 8.4               | 7.5         | 20         | 7.9                               | 78.2                              | 10.0                            | FOMC                                   |
| Bickenbach                    | 8.6               | 7.8         | 20         | 2.0                               | 22.2                              | 5.2                             | DFOP                                   |
| Unter<br>Widdersheim          | 8.6               | 7.68        | 20         | 1.1                               | 28.7                              | 2.6                             | DFOP                                   |
| Sediment phas                 | e                 |             |            |                                   |                                   | 222                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Cache                         | 8.2               | 8.1         | 20         | 33.9                              | 112.6                             | 8.4                             | SFO                                    |
| Bickenbach                    | 8.6               | 7.8         | 20         | 158.7                             | 965.3                             | 3.6                             | DFOP                                   |

 $^{1}$  DT<sub>50</sub> = DegT<sub>50</sub> for total system but DisT<sub>50</sub> for water and sediment phase

#### Glyphosate Modelling endpoints

| Glyphosate            |                   |                      |       |                                       |       |                          |
|-----------------------|-------------------|----------------------|-------|---------------------------------------|-------|--------------------------|
| Total system          | pH<br>water phase | pH sed <sup>a)</sup> | t. ⁰C | DT <sub>50</sub> (days)<br>whole sys. | Model | St.<br>(χ <sup>2</sup> ) |
| Cache                 | 8.2               | 8.1                  | 20    | 9.7                                   | SFO   | 5.3                      |
| Putah                 | 8.4               | 7.5                  | 20    | 301.4 <sup>b)</sup>                   | DFOP  | 4.4                      |
| Bickenbach            | 8.6               | 7.8                  | 20    | 144.4 <sup>b)</sup>                   | HS    | 2.2                      |
| Unter Widdersheim     | 8.6               | 7.68                 | 20    | 1000                                  | DFOP  | 4.8                      |
| Geometric mean at 20% | C                 |                      | -     | 143.3                                 |       |                          |

a) Medium not reported

<sup>b)</sup> Calculated from slow phase degradation rate (k<sub>2</sub>) as 10 % of the initial amount was not reached within experimental period

c) The estimated degradation rate is not significantly different from zero, default DegT50 of 1000 d to be used

#### AMPA : trigger endpoints

| AMPA | Distribution from parent-dosed experiments: |
|------|---------------------------------------------|
|      |                                             |

|                          | Max in water 15.79<br>Max. sed 18.7 % at          |                                 | d.        |            |                          |                           |                                                      |                                                                                                         |                       |
|--------------------------|---------------------------------------------------|---------------------------------|-----------|------------|--------------------------|---------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|
|                          | Max in total system                               |                                 |           | •          |                          |                           | <b>10</b> 00/                                        |                                                                                                         |                       |
| Study                    | Distribution from A<br>Water /<br>sediment system | AMPA-do<br>pH<br>water<br>phase | pH<br>sed | t.<br>(°C) | s: max. ir<br>Ffm<br>(-) | DT 50<br>(d) <sup>1</sup> | <b>DT</b> <sub>90</sub><br>( <b>d</b> ) <sup>1</sup> | $\begin{array}{c c} \text{fter 30 day} \\ \hline \text{St.} \\ (\chi^2 \text{err}) \\ (\%) \end{array}$ | s<br>Kinetic<br>model |
| Total system, Le         | vel P-I                                           | -                               |           | 1          |                          |                           |                                                      |                                                                                                         | 1                     |
| (2002)                   | Rückhaltebecken                                   | 8.7                             | 7.64      | 20         | -                        | 12.6                      | >1000                                                | 1.6                                                                                                     | FOMC                  |
| (2002)<br>CA 7.2.2.3/020 | Schäphysen                                        | 8.0                             | 7.34      | 20         | -                        | 2.4                       | >1000                                                | 6.2                                                                                                     | DFOP                  |
| (2003)                   | Bickenbach                                        | 8.5                             | 8.5       | 20         | -                        | _2                        | _2                                                   | _2                                                                                                      | _2                    |
| CA 7.2.2.3/019           | Unter<br>Widdersheim                              | 8.5                             | 8.5       | 20         | -                        | _2                        | _2                                                   | _2                                                                                                      | _2                    |
| (1000)                   | Bickenbach                                        | 8.3                             | 7.4       | 20         | -                        | 43.5                      | 196.8                                                | 3.5                                                                                                     | DFOP                  |
| (1999)<br>CA 7.2.2.3/021 | Unter<br>Widdersheim                              | 8.2                             | 7.5       | 20         | -                        | 17.7                      | 579.8                                                | 3.4                                                                                                     | HS                    |
| (2004)<br>CA 7.2.2.3/018 | Manningtree A                                     | 7.2                             | 7.6       | 20         | -                        | _3                        | -3                                                   | _3                                                                                                      | _3                    |
| Total system, Le         | vel M-I dissipation                               | 0.0                             | 0.1       | •          | 0.220                    | 172.0                     |                                                      |                                                                                                         | 9750                  |
| (1999)                   | Cache <sup>5</sup>                                | 8.2                             | 8.1       | 20         | 0.339                    | 172.8                     | 573.9                                                | 7.0                                                                                                     | SFO                   |
| CA 7.2.2.3/002           | Putah                                             | 8.4                             | 7.5       | 20         | _5                       | _5                        | _5                                                   | _5                                                                                                      | _5                    |
| (1002)                   | Bickenbach                                        | 8.6                             | 7.8       | 20         | 0.488                    | 15.7                      | 52.2                                                 | 9.4                                                                                                     | SFO                   |
| (1993)<br>CA 7.2.2.3/005 | Unter<br>Widdersheim                              | 8.6                             | 7.68      | 20         | 0.321                    | 8.8                       | 29.2                                                 | 22.4                                                                                                    | SFO                   |
| Water phase, Le          |                                                   | 07                              | 7.64      | 20         | T                        |                           | 00.1                                                 | 0.1                                                                                                     | FOMO                  |
| (2002)                   | Rückhaltebecken                                   | 8.7                             | 7.64      | 20         | -                        | 2.2                       | 22.1                                                 | 2.1                                                                                                     | FOMC                  |
| CA 7.2.2.3/020           | Schäphysen                                        | 8.0                             | 7.34      | 20         | -                        | 1.5                       | 5.1                                                  | 10.7                                                                                                    | SFO                   |
| (2003)                   | Bickenbach                                        | 8.5                             | 8.5       | 20         | -                        | 2.4                       | 37.1                                                 | 5.3                                                                                                     | FOMC                  |
| CA 7.2.2.3/019           | Unter<br>Widdersheim                              | 8.5                             | 8.5       | 20         | -                        | 2.1                       | 25.9                                                 | 8.0                                                                                                     | FOMC                  |
| (1000)                   | Bickenbach                                        | 8.3                             | 7.4       | 20         | -                        | 6.6                       | 50.7                                                 | 4.5                                                                                                     | DFOP                  |
| (1999)<br>CA 7.2.2.3/021 | Unter<br>Widdersheim                              | 8.2                             | 7.5       | 20         | -                        | 2.0                       | 17.3                                                 | 8.2                                                                                                     | DFOP                  |
| (2004)<br>CA 7.2.2.3/018 | Manningtree A                                     | 7.2                             | 7.6       | 20         | -                        | 0.6                       | 8.1                                                  | 1.8                                                                                                     | FOMC                  |
| Water phase, Le          | vel M-I dissipation                               |                                 |           |            | 1                        | 1                         | 1                                                    | 1                                                                                                       |                       |
| (1999)                   | Cache                                             | 8.2                             | 8.1       | 20         | 0.339                    | 172.8                     | 573.9                                                | 7.0                                                                                                     | SFO                   |
| (1999)<br>CA 7.2.2.3/002 | Putah                                             | 8.4                             | 7.5       | 20         | -                        | _5                        | _5                                                   | _ <sup>5</sup>                                                                                          | _5                    |
|                          | Bickenbach                                        | 8.6                             | 7.8       | 20         | 0.488                    | 15.7                      | 52.2                                                 | 9.4                                                                                                     | SFO                   |
| (1993)<br>CA 7.2.2.3/005 | Unter<br>Widdersheim                              | 8.6                             | 7.68      | 20         | 0.321                    | 8.8                       | 29.2                                                 | 22.4                                                                                                    | SFO                   |
| Sediment phase,          | Level P-I                                         |                                 |           |            |                          |                           |                                                      |                                                                                                         | 1                     |
| (2002)                   | Rückhaltebecken                                   | 8.7                             | 7.64      | 20         | -                        | 168.1                     | 558.3                                                | 1.9                                                                                                     | SFO                   |
| (2002)<br>CA 7.2.2.3/020 | Schäphysen                                        | 8.0                             | 7.34      | 20         | -                        | -3                        | -3                                                   | _3                                                                                                      | _3                    |
| (2003)                   | Bickenbach                                        | 8.5                             | 8.5       | 20         | -                        | - <sup>2</sup>            | -2                                                   | _2                                                                                                      | _2                    |
| CA 7.2.2.3/019           | Unter<br>Widdersheim                              | 8.5                             | 8.5       | 20         | -                        | _2                        | _2                                                   | -2                                                                                                      | _2                    |
| (1000)                   | Bickenbach                                        | 8.3                             | 7.4       | 20         | -                        | -4                        | -4                                                   | _4                                                                                                      | _4                    |
| (1999)<br>CA 7.2.2.3/021 | Unter<br>Widdersheim                              | 8.2                             | 7.5       | 20         | -                        | _3                        | _3                                                   | _3                                                                                                      | _3                    |

| (2004)<br>CA 7.2.2.3/018 Manningtree A | 7.2 | 7.6 | 20 | - | _4 | 4 | _4 | _4 |
|----------------------------------------|-----|-----|----|---|----|---|----|----|
|----------------------------------------|-----|-----|----|---|----|---|----|----|

 $^{1}$  DT<sub>50</sub> = DegT<sub>50</sub> for total system but DisT<sub>50</sub> for water and sediment phase

<sup>2</sup> The data of the sediment phase and the total system were not considered in the kinetic evaluation <sup>3</sup>No acceptable fits obtained and no endpoints could be derived

<sup>4</sup>No evaluations could be conducted for the sediment phase due to the limited number of data points available after the peak concentration

<sup>5</sup> No evaluations could be conducted for any compartment at Level M-I dissipation due to the limited number of data points available after the peak concentration

#### AMPA: modelling endpoints

| Study                    | Water /<br>sediment system | pH<br>water<br>phase | pH<br>sed | t.<br>(°C) | Model        | Ffm<br>from<br>parent<br>(-) | SFO<br>DT <sub>50</sub><br>(d) <sup>1</sup> | St.<br>(χ <sup>2</sup> err)<br>(%) |
|--------------------------|----------------------------|----------------------|-----------|------------|--------------|------------------------------|---------------------------------------------|------------------------------------|
| Total system, Lev        | vel P-I                    |                      |           |            |              |                              |                                             |                                    |
| (2002)                   | Rückhaltebecken            | 8.7                  | 7.64      | 20         | DFOP         | -                            | 95.0 <sup>2</sup>                           | 3.8                                |
| (2002)<br>CA 7.2.2.3/020 | Schäphysen                 | 8.0                  | 7.34      | 20         | DFOP         | -                            | 1000 <sup>3</sup>                           | 6.2                                |
| (2003)                   | Bickenbach                 | 8.5                  | 8.5       | 20         | _4           | -                            | _4                                          | _4                                 |
| CA 7.2.2.3/019           | Unter<br>Widdersheim       | 8.5                  | 8.5       | 20         | _4           | -                            | -4                                          | _4                                 |
|                          | Bickenbach                 | 8.3                  | 7.4       | 20         | SFO          | -                            | 47.7                                        | 5.9                                |
| (1999)<br>CA 7.2.2.3/021 | Unter<br>Widdersheim       | 8.2                  | 7.5       | 20         | HS           | -                            | 288.8 <sup>2</sup>                          | 3.4                                |
| (2004)<br>CA 7.2.2.3/018 | Manningtree A              | 7.2                  | 7.6       | 20         | _5           | -                            | _5                                          | _5                                 |
| Total system, Lev        | vel M-I dissipation        |                      |           |            |              |                              |                                             |                                    |
| (1000)                   | Cache                      | 8.2                  | 8.1       | 20         | SFO          | 0.339                        | 172.8                                       | 7.0                                |
| (1999)<br>CA 7.2.2.3/002 | Putah                      | 8.4                  | 7.5       | 20         | _6           | _6                           | _6                                          | _6                                 |
|                          | Bickenbach                 | 8.6                  | 7.8       | 20         | SFO          | 0.488                        | 26.8 <sup>7</sup>                           | 7.9                                |
| (1993)<br>CA 7.2.2.3/005 | Unter<br>Widdersheim       | 8.6                  | 7.68      | 20         | SFO          | 0.321                        | 15.1 <sup>7</sup>                           | 5.8                                |
| Geometric mean           | (total system) (n = 7      | 7, derived fro       | om Level  | l P-I and  | M-I dissipat | tion)                        | 98.7                                        |                                    |

<sup>1</sup>  $DT_{50} = DegT_{50}$  for total system but  $DisT_{50}$  for water and sediment phase

<sup>2</sup> Calculated from slow phase degradation rate (k<sub>2</sub>) as 10 % of the initial amount was not reached within experimental period

<sup>3</sup> The estimated degradation rate is not significantly different from zero, default DegT<sub>50</sub> of 1000 d to be used

<sup>4</sup> The data of the sediment phase and the total system were not considered in the kinetic evaluation

<sup>5</sup> No acceptable fits obtained and no endpoints could be derived

<sup>6</sup> No evaluations could be conducted for any compartment at Level M-I dissipation due to the limited number of data points available after the peak concentration

<sup>7</sup> Since AMPA was not detected in sediment in the study, evaluations at Level M-I dissipation were performed for the water phase only, which are also applicable for total system

HMPA: trigger and modelling endpoints

| Metabolite HMPA (from glyphosate dosed experiments) |                                                                            |             |           |                           |                           |                           |                                    |       |  |
|-----------------------------------------------------|----------------------------------------------------------------------------|-------------|-----------|---------------------------|---------------------------|---------------------------|------------------------------------|-------|--|
| <b>XX</b> /- 4 /                                    | <b>Distribution:</b><br>Max in water: 10.0 % at 61 DAT (system Bickenbach) |             |           |                           |                           |                           |                                    |       |  |
| Water /                                             | Max in to                                                                  | tal system: | 10 % at 6 | l DAT (sys                | stem Bicke                | nbach)                    |                                    |       |  |
| sediment<br>system                                  | pH<br>water<br>phase                                                       | pH sed      | t. (°C)   | DegT <sub>50</sub><br>(d) | DegT <sub>90</sub><br>(d) | Formation<br>fraction (-) | St.<br>(χ <sup>2</sup> err)<br>(%) | Model |  |
| Bickenbach                                          | 8.6                                                                        | 7.8         | 20        | 128.8                     | 427.8                     | 0.366<br>(from AMPA)      | 20.5                               | SFO   |  |
| Unter<br>Widdersheim                                | 8.6                                                                        | 7.68        | 20        | 10                        | 33.4                      | 0.359<br>(from AMPA)      | 39.3                               | SFO   |  |

| Mineralisation and non extractable residues (from parent dosed experiments) |                      |           |                                                         |                                                          |                                                                             |  |  |
|-----------------------------------------------------------------------------|----------------------|-----------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Water / sediment<br>system                                                  | pH<br>water<br>phase | pH<br>sed | Mineralisation<br>x % after n d. (end<br>of the study). | Non-extractable<br>residues in sed. max x<br>% after n d | Non-extractable residues in<br>sed. max x % after n d (end<br>of the study) |  |  |
| Cache                                                                       | 8.2                  | 8.1       | 48.0 (100 d)                                            | 13.5 (58 d)                                              | 13.5 (58 d)                                                                 |  |  |
| Putah                                                                       | 8.4                  | 7.5       | 5.9 (100 d)                                             | 20.3 (58 d)                                              | 16.7 (100 d)                                                                |  |  |
| Bickenbach                                                                  | 8.6                  | 7.8       | 20.2 (61 d)                                             | 22.0 (100 d)                                             | 22.0 (100 d)                                                                |  |  |
| Unter<br>Widdersheim                                                        | 8.6                  | 7.68      | 19.4 (61 d)                                             | 13.6 (100 d)                                             | 13.6 (100 d)                                                                |  |  |

### Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

| Direct photolysis in air                   | Not studied - no data requested                                                                                                                                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photochemical oxidative degradation in air | $DT_{50}$ of 1.625 hours derived by the Atkinson model (AOPWIN <sup>TM</sup> 1.92a). OH (12 h) concentration assumed = 1.5 x 10 <sup>6</sup> radicals/cm <sup>3</sup> |
| Volatilisation                             | from plant surfaces (BBA guideline): negligible after 24 hours (n=3)                                                                                                  |
|                                            | from soil surfaces (BBA guideline): ): negligible after 24 hours (n=2)                                                                                                |
| Metabolites                                | -                                                                                                                                                                     |

### Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

| Soil:          | Glyphosate, AMPA             |
|----------------|------------------------------|
| Surface water: | Glyphosate, AMPA, HMPA       |
| Sediment:      | Glyphosate, AMPA, 1-oxo-AMPA |
| Ground water:  | Glyphosate, AMPA             |
| Air: Gly       | phosate                      |

# Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

### Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

| Soil (indicate location and type of study)   | Public monitoring data                                                                                                          |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                              | DE: 57 samples from 29 sites from the German federal state of Brandenburg                                                       |
|                                              | Detection above LOQ: ~ 30 % of samples for glyphosate, in ~86% of samples for AMPA.                                             |
|                                              | Maximum concentration 25 mg/kg for GLY and 0.975 mg/kg for AMPA (depth unknown)                                                 |
|                                              | EU wide data from LUCAS topsoil project:                                                                                        |
|                                              | 317 samples                                                                                                                     |
|                                              | Detection above LOQ: ~ 21 % of samples for glyphosate, in ~ 42 % of samples for AMPA.                                           |
|                                              | Maximum concentration 2.05 mg/kg for GLY and 1.92 mg/kg for AMPA (15/20 cm depth), associated with vineyard.                    |
| Surface water (indicate location and type of | Public monitoring data, EU wide                                                                                                 |
| study)                                       | > 291 000 samples from > 13 800 sampling sites for glyphosate                                                                   |
|                                              | > 269 000 samples collected from > 12 400 sampling sites for AMPA                                                               |
|                                              | Detection above LOQ: ~ 40 % of samples for glyphosate, in ~ 64 % of samples for AMPA.                                           |
|                                              | Compliance with RAC and EQS $>$ 99 % of samples for both glyphosate and AMPA.                                                   |
|                                              | Maximum concentration to be confirmed pending additional data on outlier exclusion procedure.                                   |
| Ground water (indicate location and type of  | Public monitoring data, EU wide                                                                                                 |
| study)                                       | > 251 000 samples from > 37 800 sampling sites for glyphosate                                                                   |
|                                              | > 230 000 samples from > 34 400 sampling sites for AMPA                                                                         |
|                                              | Detection above LOQ: ~ 2 % of samples for glyphosate, in ~ 2.9 % of samples for AMPA.                                           |
|                                              | Compliance with threshold of 0.1 $\mu$ g/L: > 99 % for both glyphosate and AMPA.                                                |
|                                              | Compliance with threshold of 10 $\mu$ g/L: > 99.99 % for AMPA.                                                                  |
|                                              | Maximum concentration 39.2 $\mu g/L$ for GLY and 19 $\mu g/L$ for AMPA                                                          |
| Air (indicate location and type of study)    | No EU wide data available                                                                                                       |
|                                              | Data from FR exploratory pesticide campaign:                                                                                    |
|                                              | from June 2018 to June 2019, on 8 sites (3 urban/peri-<br>uban areas and 5 rural areas) with different agricultural<br>profiles |

Glyphosate quantified in 56% of the analyses (LOQ 0.009 ng/m<sup>3</sup>). Maximum concentration for glyphosate: 1.225 ng/m3, 95th percentile concentration is 0.088 ng/m3 AMPA quantified in 1.3% of the analyses (LOQ 0.009 ng/m<sup>3</sup>).

#### PEC soil (Regulation (EU) Nº 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

| Parent<br>Method of calculation | Kinetics: DFOP (k <sub>1</sub> : 0.0551 day <sup>-1</sup> ; k <sub>2</sub> : 0.0017 day <sup>-1</sup> ; g: 0.9420) |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                 | Field or Lab: representative worst case from field<br>(Ontario site)<br>ESCAPE 2.0                                 |
|                                 | ESCAPE 2.0                                                                                                         |
| Application data                | Crop: all uses (risk envelope approach)                                                                            |
|                                 | Depth of soil layer: 5cm (for plateau, 5 cm for railway uses and perennial crops; 5 and 20cm for field crops)      |
|                                 | Soil bulk density: 1.5g/cm <sup>3</sup>                                                                            |
|                                 | % plant interception: no interception                                                                              |
|                                 | Number of applications: 1                                                                                          |
|                                 | Interval (d): -                                                                                                    |
|                                 | Application rate(s): 3600 g a.s./ha (railway uses)                                                                 |
|                                 | 2880 g a.s./ha (perennial crops)                                                                                   |
|                                 | 2160 g a.s./ha (field crops)                                                                                       |

#### 3600 g a.s./ha (railway uses)

| PEC <sub>(s)</sub><br>(mg/kg) | Single<br>application<br>Actual | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |
|-------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Initial                       | 4.800                           |                                                   |                                   |                                                     |
| Plateau concentration         | 0.323 mg/kg o                   | on 5 cm                                           |                                   |                                                     |
| PECaccumulation               | 5.123 mg/kg (                   | background on 5 cm)                               |                                   |                                                     |

#### 2880 g a.s./ha (perennial crops)

| PEC <sub>(s)</sub><br>(mg/kg) | Single<br>application<br>Actual | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |
|-------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Initial                       | 3.840                           |                                                   |                                   |                                                     |
| Plateau concentration         | 0.259 mg/kg o                   | n 5 cm                                            |                                   |                                                     |
| PECaccumulation               | 4.099 mg/kg (l                  | packground on 5 cm)                               |                                   |                                                     |

### 2160 g a.s./ha (field crops)

| PEC <sub>(s)</sub><br>(mg/kg) | Single<br>application<br>Actual   | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |  |
|-------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|--|
| Initial                       | 2.880                             |                                                   |                                   |                                                     |  |
| Plateau                       | 0.194 mg/kg or                    | 0.194 mg/kg on 5 cm                               |                                   |                                                     |  |
| concentration                 | 0.049 mg/kg on 20 cm              |                                                   |                                   |                                                     |  |
| PECaccumulation               | 3.074 mg/kg (background on 5 cm)  |                                                   |                                   |                                                     |  |
|                               | 2.929 mg/kg (background on 20 cm) |                                                   |                                   |                                                     |  |

| AMPA                  | Molecular weight relative to the parent: 111.04/169.1                                                                                    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Method of calculation | DT <sub>50</sub> (d): 1040 days                                                                                                          |
|                       | Kinetics: SFO                                                                                                                            |
|                       | Field or Lab: representative worst case from laboratory                                                                                  |
|                       | Max occurrence from lab and field studies: 46.9%                                                                                         |
|                       | ESCAPE 2.0                                                                                                                               |
| Application data      | Application rate assumed (applied as parent in ESCAPE, application rate of glyphosate corrected for molar ratio and maximum occurrence): |
|                       | 1109 g AMPA/ha (railway uses)                                                                                                            |
|                       | 887 g AMPA/ha (uses on perennial crops)                                                                                                  |
|                       | 665 g AMPA/ha (uses on field crops)                                                                                                      |

### 3600 g a.s./ha (railway uses)

| PEC <sub>(s)</sub><br>(mg/kg)               | Single<br>application<br>Actual                     | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |  |
|---------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|--|
| Initial                                     | 1.478                                               |                                                   |                                   |                                                     |  |
| Plateau<br>concentration<br>PECaccumulation | 5.367 mg/kg on 5 cm6.845 mg/kg (background on 5 cm) |                                                   |                                   |                                                     |  |

### 2880 g a.s./ha (perennial crops)

| PEC <sub>(s)</sub><br>(mg/kg)               | Single<br>application<br>Actual  | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |
|---------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Initial                                     | 1.182                            |                                                   |                                   |                                                     |
| Plateau<br>concentration<br>PECaccumulation | 4.293 mg/kg of<br>5.476 mg/kg (t | n 5 cm<br>background on 5 cm)                     |                                   |                                                     |

### 2160 g a.s./ha (field crops)

| PEC <sub>(s)</sub><br>(mg/kg) | Single<br>application<br>Actual   | Single<br>application<br>Time weighted<br>average | Multiple<br>application<br>Actual | Multiple<br>application<br>Time weighted<br>average |
|-------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Initial                       | 0.887                             |                                                   |                                   |                                                     |
| Plateau                       | 3.217 mg/kg on 5 cm               |                                                   |                                   |                                                     |
| concentration                 | 0.804 mg/kg on 20 cm              |                                                   |                                   |                                                     |
| PECaccumulation               | 4.104 mg/kg (background on 5 cm)  |                                                   |                                   |                                                     |
|                               | 1.691 mg/kg (background on 20 cm) |                                                   |                                   |                                                     |

#### PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

As a first informative estimation of PECgw for the peer review, PECgw for agricultural uses were recalculated by the RMS for two application patterns: an example for perennial crops (Apple, 1x2880 g/ha, application on October 1<sup>st</sup>) and an example for field crops (Potatoes, 1x2160 g/ha, application 7 days after harvest). Details are provided below. A data gap is set for the applicant to provide updated PECgw calculations for all intended uses considering the application schemes initially proposed, the endpoints agreed during the peer review and all relevant models.

| Method of calculation and type of study ( <i>e.g.</i> | FOCUS Modelling                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| modelling, field leaching, lysimeter)                 | Models used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3;                                                                                                                                                                                                                                                        |
|                                                       | Crops: apple, potatoes                                                                                                                                                                                                                                                                                    |
|                                                       | All relevant FOCUSgw scenarios simulated                                                                                                                                                                                                                                                                  |
|                                                       | Glyphosate:                                                                                                                                                                                                                                                                                               |
|                                                       | Molar mass (g/mol): 169.1<br>Crop uptake factor: 0<br>Water solubility (mg/L): 100 000 at 20 °C, 200 000 at 30 °C<br>Vapour pressure: PEARL: $1.31 \times 10^{-5} (25 °C) /$<br>PELMO: $6.81 \times 10^{-6} (20 °C) / 2.72 \times 10^{-5} (30 °C)$                                                        |
|                                                       | Normalised $DT_{50}$ : Degradation is pH dependent and biphasic. 2 sets of simulations are performed, each including parent and metabolite.                                                                                                                                                               |
|                                                       | <i>First set of simulations</i> : $DT_{50}$ : 0.1d (minimum fast phase normalized $DT_{50}$ , from laboratory - pathway fits – and field, n=12)<br><i>Second set of simulations</i> : $DT_{50}$ : 161.1 days (maximum slow phase normalized $DT_{50}$ , from laboratory - pathway fits – and field, n=12) |
|                                                       | $K_{OC}/K_{om}$ : 4348 / 2522 (geometric mean, n = 10)                                                                                                                                                                                                                                                    |
|                                                       | 1/n: 0.682 (arithmetic mean, n = 10)                                                                                                                                                                                                                                                                      |
|                                                       | AMPA                                                                                                                                                                                                                                                                                                      |
|                                                       | Molar mass (g/mol): 111.04<br>Crop uptake factor: 0<br>Water solubility (mg/L): 100 000 at 20 °C (parent data)<br>Vapour pressure: $1.31 \times 10^{-5}$ (25 °C) (parent data)                                                                                                                            |
|                                                       | Normalized DT <sub>50</sub> : <b>1040 d (max laboratory normalized DT50, SFO, n=10, to take into account pH-dependence)</b>                                                                                                                                                                               |
|                                                       | $K_{OC}/K_{om}$ : 2541 / 1474 (geometric mean, n = 8)                                                                                                                                                                                                                                                     |
|                                                       | 1/n: 0.767 (arithmetic mean, $n = 8$ )                                                                                                                                                                                                                                                                    |
|                                                       | Formation fraction : 0.290 from glyphosate (mean laboratory studies, n=7)                                                                                                                                                                                                                                 |
|                                                       | Modelling for application to railways:                                                                                                                                                                                                                                                                    |
|                                                       | Model used: HardSPEC 1.4.3.2                                                                                                                                                                                                                                                                              |

|                  | Glyphosate:                                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------|
|                  | Molar mass (g/mol): 169.1                                                                                           |
|                  | Water solubility (mg/L): 100 000                                                                                    |
|                  | Soil $DT_{50}$ : 161.1 days (max normalized $DT50$ from parent-only fits, n=12, to take into account pH-dependence) |
|                  | $K_{OC}/K_{om}$ : 4348 / 2522 (geometric mean, n = 10)                                                              |
|                  | Metabolite AMPA:                                                                                                    |
|                  | Molar mass (g/mol): 111.04                                                                                          |
|                  | Water solubility (mg/L): 100 000 (parent data)                                                                      |
|                  | Soil $DT_{50}$ : 1040 (max laboratory normalized DT50, $n=10$ , to take into account pH-dependence)                 |
|                  | $K_{OC}/K_{om}$ : 2541 / 1474 (geometric mean, n = 8)                                                               |
| Application rate | FOCUS calculations                                                                                                  |
|                  | Gross application rate: 2880 g/ha on apple                                                                          |
|                  | 2160 g/ha on potatoes                                                                                               |
|                  | Canopy interception 0 %:                                                                                            |
|                  | No. of applications: 1                                                                                              |
|                  | Time of application (absolute or relative application dates):                                                       |
|                  | Apple: absolute application on October 1 <sup>st</sup>                                                              |
|                  | Potatoes: relative application, 7 days after harvest                                                                |
|                  | HardSPEC calculations:                                                                                              |
|                  | Gross application rate (g a.s./ha): 3600                                                                            |
|                  | For AMPA, parent rate was corrected for molecular ratio only (2364 g AMPA/ha)                                       |
|                  | omy (2504 g AMPA/IIa)                                                                                               |

#### **FOCUS calculations**

#### PECgw of glyphosate and AMPA (FOCUS PEARL and FOCUS PELMO)

|                                                                  |                                    | Glyphosate (µg/L)                  |                                         | AMPA (µg/L)                        |                                         |
|------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------|------------------------------------|-----------------------------------------|
| Сгор                                                             | Scenario                           | parent DT <sub>50</sub> = 0.1 days | parent DT <sub>50</sub> =<br>161.2 days | parent DT <sub>50</sub> = 0.1 days | parent DT <sub>50</sub> =<br>161.2 days |
| Apple<br>$1^{st}$ October<br>$(1 \times 2880 \text{ g a.s./ha})$ | All relevant<br>FOCUS<br>scenarios | <0.001                             | <0.001                                  | <0.001                             | <0.001                                  |
| Potatoes<br>7 d after harvest<br>(1 x 2160 g a.s./ha             | All relevant<br>FOCUS<br>scenarios | <0.001                             | <0.001                                  | <0.001                             | <0.001                                  |

### **HardSPEC calculations**

### PECgw of glyphosate and AMPA – 1 x 3600 g/ha on railways

|                                                                               | Glyphosate                                    |        |        | AMPA      |           |       |
|-------------------------------------------------------------------------------|-----------------------------------------------|--------|--------|-----------|-----------|-------|
| Average annual concentration at the base of the railway formation $(\mu g/L)$ | 0.01                                          |        |        | 0.01      |           |       |
|                                                                               | Exposure at the abstraction well-head         |        |        |           |           |       |
|                                                                               | Glyphosate<br>Chalk Limestone Sandstone Chalk |        | AMPA   |           |           |       |
|                                                                               |                                               |        | Chalk  | Limestone | Sandstone |       |
| Max. concentration in well (µg/L)                                             | < 0.001                                       | <0.001 | <0.001 | 0.028     | 0.006     | 0.007 |
| Period when plume in well $>0.1 \ \mu g/L (d)$                                | 0                                             | 0      | 0      | 0         | 0         | 0     |

# PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

### FOCUS calculations

As a 1<sup>st</sup> informative estimation of PECsw for the peer review, PECsw for agricultural uses were recalculated by the RMS for the expected worst-case application pattern. Details are provided below. A data gap is set for the applicant to provide updated PECsw calculations for all intended uses considering the application schemes initially proposed, the endpoints agreed during the peer review and all relevant models.

| Version control no. of FOCUS calculator: FOCUS Step                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-2 v. 3.2                                                                                                                                                                 |
| Molecular weight (g/mol): 169.1                                                                                                                                            |
| Koc/Kom (mL/g): 4348 / 2522 (geometric mean, n = 10)                                                                                                                       |
| $DT_{50}$ soil (d): 161.1 days (maximum modelling<br>normalized $DT_{50}$ , from laboratory – parent-only fits - and<br>field, n = 12, to take into account pH-dependence) |
| $DT_{50}$ water/sediment/system (d): 143.3 (geometric mean, total system, $n = 4$ )                                                                                        |
| Not performed by RMS                                                                                                                                                       |
| Crop and growth stage: potatoes (used as surrogate for<br>modelling suitable drift values for herbicide application<br>on orchards, vines and field crops)                 |
| Number of applications: 2                                                                                                                                                  |
| Interval (d): 28                                                                                                                                                           |
| Application rate(s): 1440 g a.s./ha                                                                                                                                        |
| Crop interception (%) :no interception                                                                                                                                     |
| Application window: Northern Europe, October-<br>February (worst-case)                                                                                                     |
|                                                                                                                                                                            |

| FOCUS STEP 1 | Day after          | PECsw(µg/L) | )   | PECsED (µg/l | (g) |  |
|--------------|--------------------|-------------|-----|--------------|-----|--|
| Scenario     | overall<br>maximum | Actual      | TWA | Actual       | TWA |  |
| 94           | 0 h                | 167.72      |     | 6280         |     |  |

| 3        |      |           |                       | 1               |
|----------|------|-----------|-----------------------|-----------------|
| FOCUS ST | FP 2 | Day after | $PEC_{sw}(\mu g/L)^*$ | PECsed (ug/kg)* |
| 1000001  |      | Duy unei  | I LOSW (µg/L)         | I LOSED (HE/KE) |
|          |      |           |                       |                 |

| Scenario    | overall<br>maximum | Actual        | TWA | Actual | TWA |
|-------------|--------------------|---------------|-----|--------|-----|
| Northern EU | 0 h                | 69.95 (37.44) |     | 2970   |     |

\* Values in brackets refer to single application / no values in brackets when not calculated by the model

| r mean, n = 8)<br>7 normalized DT50,<br>ndence) |
|-------------------------------------------------|
| v normalized $DT_{50}$ , endence)               |
| v normalized $DT_{50}$ , endence)               |
| endence)                                        |
|                                                 |
| 8.7 (geometric mean,                            |
| molar basis with                                |
|                                                 |
|                                                 |
| sed as surrogate for<br>nerbicide application   |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
| ion                                             |
| 5)                                              |

| FOCUS STEP 1 | Day after          | er PEC <sub>SW</sub> (µg/L) PEC <sub>SU</sub> |     | PEC <sub>SED</sub> (µg/k | EC <sub>SED</sub> (µg/kg) |  |
|--------------|--------------------|-----------------------------------------------|-----|--------------------------|---------------------------|--|
| Scenario     | overall<br>maximum | Actual                                        | TWA | Actual                   | TWA                       |  |
|              | Oh                 | 111.02                                        |     | 2710                     |                           |  |

| FOCUS STED 2             | Day after          | PECsw(µg/L)*  |     | PEC <sub>SED</sub> (µg/kg)* |     |
|--------------------------|--------------------|---------------|-----|-----------------------------|-----|
| FOCUS STEP 2<br>Scenario | overall<br>maximum | Actual        | TWA | Actual                      | TWA |
| Northern EU              | 0 h                | 52.47 (27.08) |     | 1320 (681.83)               |     |

\* Values in brackets refer to single application

|                                         | ALTER MAND ACTS MANAGEMENTER AN THAN ANTIMICIC AND                                                                                                         |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metabolite HMPA                         | Molecular weight (g/mol): 112.02                                                                                                                           |
| Parameters used in FOCUSsw step 1 and 2 | Water metabolite                                                                                                                                           |
|                                         | Koc/Kom (mL/g): 10 (default value)                                                                                                                         |
|                                         | DT50 soil (d): -                                                                                                                                           |
|                                         | DT50 water/sediment/ system (d): 1000 (FOCUS default)                                                                                                      |
|                                         | Maximum occurrence observed (% molar basis with respect to the parent)                                                                                     |
|                                         | Total Water and Sediment: 10                                                                                                                               |
|                                         | Soil: 0                                                                                                                                                    |
| Application rate                        | Crop and growth stage: potatoes (used as surrogate for<br>modelling suitable drift values for herbicide application<br>on orchards, vines and field crops) |
|                                         | Number of applications: 2                                                                                                                                  |
|                                         | Interval (d): 28                                                                                                                                           |
|                                         | Application rate(s): 1440 g a.s./ha                                                                                                                        |
|                                         | Crop interception (%): no interception                                                                                                                     |
|                                         | Application window: Northern Europe, October-                                                                                                              |
|                                         | February (worst-case)                                                                                                                                      |

| FOCUS STEP | Day after | $PEC_{sw}(\mu g/L)$ |     | PEC <sub>SED</sub> (µg/kg) |     |
|------------|-----------|---------------------|-----|----------------------------|-----|
| 1          | overall   | Actual              | TWA | Actual                     | TWA |
| Scenario   | maximum   |                     |     |                            |     |
|            | Oh        | 58.06               |     | 57.82                      |     |

| FOCUS STEP  | Day after | PEC <sub>sw</sub> (µg/L)* |     | PEC <sub>SED</sub> (µg/kg)* |     |
|-------------|-----------|---------------------------|-----|-----------------------------|-----|
| 2           | overall   | Actual                    | TWA | Actual                      | TWA |
| Scenario    | maximum   |                           |     |                             |     |
| Northern EU | 0 h       | 52.47 (27.08)             |     | 1320 (681.83)               |     |

\* Values in brackets refer to single application

### HardSPEC calculations

| Parent                      | Version 1.4.3.2                                                                                                                                                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters used in HardSPEC | Molecular weight (g/mol): 169.1                                                                                                                                                                                                     |
|                             | Water solubility (mg/L): 100 000                                                                                                                                                                                                    |
|                             | $K_{OC}/K_{OM}$ (mL/g): 4348 / 2522 (geometric mean, n = 10)                                                                                                                                                                        |
|                             | $DT_{50}$ soil (d): 161.1 days (max normalized $DT_{50}$<br>laboratory - parent only fits - and field, n=12, to take into<br>account pH-dependence)<br>$DT_{50}$ water/sediment (d): 143.3 (geometric mean, total<br>system, n = 4) |
| Application rate            | Use: Railway<br>Number of applications: 1<br>Interval (d): -<br>Application rate(s): 3600 g a.s./ha                                                                                                                                 |

Crop interception (%): no interception

|                        | Acute (24 hrs) conce              | entration                             | Application day PECsw                  |
|------------------------|-----------------------------------|---------------------------------------|----------------------------------------|
|                        | Water phase (ug L <sup>-1</sup> ) | Sediment phase (ug kg <sup>-1</sup> ) | from spray drift (µg L <sup>-1</sup> ) |
| Railway ditch leaching | 9.458                             | 34.240                                | 9.458                                  |
| Railway ditch runoff   | 9.458                             | 34.781                                | 9.458                                  |

| Metabolite AMPA             | Molecular weight (g/mol): 111.04                                                                                     |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|
| Parameters used in HardSPEC | Soil and water metabolite                                                                                            |
|                             | Koc/Kom (mL/g): 2541 (geometric mean, n = 8)                                                                         |
|                             | $DT_{50}$ soil (d): 1040 (max laboratory normalized $DT_{50}$ , n=10, to take into account pH-dependence)            |
|                             | $DT_{50}$ water/sediment/ system (d): 98.7 (geometric mean, total system, n = 7)                                     |
| Application rate            | Use: Railway                                                                                                         |
|                             | Number of applications: 1                                                                                            |
|                             | Interval (d): -                                                                                                      |
|                             | Application rate: 3600 g a.s./ha (corrected for molar ratio of 111.04/169.1, metabolite applied as parent substance) |

|                        | Acute (24 hrs) conce              | ntration                                                                | Application day PECsw |  |
|------------------------|-----------------------------------|-------------------------------------------------------------------------|-----------------------|--|
|                        | Water phase (ug L <sup>-1</sup> ) | Water phase (ug L <sup>-1</sup> ) Sediment phase (ug kg <sup>-1</sup> ) |                       |  |
| Railway ditch leaching | 6.210                             | 18.390                                                                  | 6.210                 |  |
| Railway ditch runoff   | 6.210                             | 19.469                                                                  | 6.210                 |  |

### Metabolite HMPA Parameters used in HardSPEC

Railway use

PECsw estimated from HardSPEC PECsw of glyphosate, corrected for molar ratio (112.02/169.1) and maximum occurrence in water (10%)

|                        | Acute (24 hrs) conce              | ntration                                                                | Application day PECsw |
|------------------------|-----------------------------------|-------------------------------------------------------------------------|-----------------------|
|                        | Water phase (ug L <sup>-1</sup> ) | Water phase (ug L <sup>-1</sup> ) Sediment phase (ug kg <sup>-1</sup> ) |                       |
| Railway ditch leaching | 0.627                             | -                                                                       | 0.627                 |
| Railway ditch runoff   | 0.627                             | -                                                                       | 0.627                 |

# Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

No data, not required

#### PEC

Maximum concentration

No data, not required

### Ecotoxicology

# Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

| Species                   | Test substance       | Time scale                       | End point         | Toxicity                                                               |
|---------------------------|----------------------|----------------------------------|-------------------|------------------------------------------------------------------------|
|                           |                      |                                  |                   | (mg a.e./kg<br>bw per day)                                             |
| Birds                     |                      |                                  |                   |                                                                        |
| Colinus virginianus       | Glyphosate K- salt   | Acute oral                       | LD <sub>50</sub>  | > 2241                                                                 |
| Colinus virginianus       | Glyphosate acid      | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| Colinus virginianus       | Glyphosate technical | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| Colinus coturnis japonica | Glyphosate technical | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| Colinus coturnis japonica | Glyphosate technical | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| Anas platyrhynchos        | Glyphosate technical | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| Anas platyrhynchos        | Glyphosate technical | Acute oral                       | LD <sub>50</sub>  | > 2000                                                                 |
| All birds <sup>1</sup>    | a.s.                 | Acute oral                       | LD <sub>50</sub>  | 4334                                                                   |
|                           | Preparation          | Acute oral                       | LD <sub>50</sub>  | No data                                                                |
| Colinus virginianus       | AMPA                 | Acute oral                       | LD <sub>50</sub>  | > 2250                                                                 |
| Colinus virginianus       | Glyphosate acid      | Short term                       | LDD <sub>50</sub> | >1511                                                                  |
| Anas platyrhynchos        | Glyphosate acid      | Short term                       | LDD <sub>50</sub> | >1715                                                                  |
| Colinus virginianus       | Glyphosate acid      | Long term                        | NOEC/NOEL         | 2250 mg a.e./kg<br>feed<br>201 mg a.e./kg<br>bw d <sup>-1</sup>        |
| Anas platyrhynchos        | Glyphosate acid      | Long term                        | NOEC/NOEL         | 1000 mg a.e./kg<br>feed<br><b>116</b> mg a.e./kg<br>bw d <sup>-1</sup> |
| Anas platyrhynchos        | Glyphosate technical | Long term                        | NOEC/NOEL         | 1000 mg a.e./kg<br>feed<br>125 mg a.e./kg<br>bw d <sup>-1</sup>        |
| Mammals                   | ·                    |                                  | ·                 | •                                                                      |
| Rat and mouse             | Glyphosate acid      | Acute [for<br>screening<br>step] | LD <sub>50</sub>  | >2000                                                                  |
| All mammals <sup>2</sup>  | Glyphosate acid      | Acute [for<br>Tier 1]            | LD <sub>50</sub>  | 3447                                                                   |
| Rat                       | Preparation          | Acute                            | LD <sub>50</sub>  | >5000                                                                  |
| Rat and mice              | AMPA                 | Acute                            | LD <sub>50</sub>  | >5000                                                                  |

| Rabbit | Glyphosate technical | Long-term<br>[for<br>screening<br>step]               | NOAEL | 50  |
|--------|----------------------|-------------------------------------------------------|-------|-----|
| Rabbit | Glyphosate technical | Long-term<br>[for Tier 1<br>and 2 risk<br>assessment] | NOAEL | 100 |
|        | AMPA                 | Long-term                                             | NOAEL | 150 |

Endocrine disrupting properties (Annex Part A, points 8.1.5)

An amphibian metamorphosis assay (AMA) is available. No indications on endocrine activity were observed.

Additional higher tier studies (Annex Part A, points 10.1.1.2):

Refinements of residue decline in plants were proposed but not sufficiently supported by available information.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

<u>Birds</u>

One study from the open literature was considered relevant for the risk assessment. The study was performed on *Coturnix japonica* and generated a chronic LOEC of 164 mg a.s./kg food for flight feather moult in females and plumage development in all juveniles.

#### Amphibians

8 studies from the open literature were considered relevant for the risk assessment (and 16 less relevant, but supplementary, to be used in a WoE). For the relevant studies, the 96 h  $LC_{50}$  for embryos and tadpoles of 5 different taxa ranged 106 mg/L to >403 mg/L for glyphosate technical and 7.04 mg a.i./L to 446 mg a.e./L for preparations.

1 All acute oral bird studies resulted in endpoints > 2000 mg/kg bw (see Section CA 8.1.1.1). Therefore an extrapolation factor of 2.167 as recommended in the Guidance Document on Risk Assessment for Birds and Mammals (EFSA Journal 2009; 7(12): 1438) was applied.

2 Geomean approach based on available data.

# Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

| 0.                              | The use of glyphosate in field crops: Uses 1 a-c, 2 a-c, 3 a-b, 6 a-b, 10 a-c |            |                              |       |         |  |  |
|---------------------------------|-------------------------------------------------------------------------------|------------|------------------------------|-------|---------|--|--|
| 1 × 1440 g/ha                   | 1 × 1440 g/ha                                                                 |            |                              |       |         |  |  |
| Growth stage                    | Indicator or focal species                                                    | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |  |  |
| Screening Step                  | o (Birds)                                                                     |            |                              |       |         |  |  |
| Grassland                       | Large herbivorous birds                                                       | Acute      | 43.9                         | 98.7  | 10      |  |  |
| Bare soil                       | Small granivorous birds                                                       | Acute      | 35.6                         | 122.0 | 10      |  |  |
| Bulb and<br>onion like<br>crops | Small omnivorous birds                                                        | Acute      | 229                          | 19.0  | 10      |  |  |

| The use of glyphosate in field crops: Uses 1 a-c, 2 a-c, 3 a-b, 6 a-b, 10 a-c 1 × 1440 g/ha                              |                                                                                                         |            |                              |      |         |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Growth stage                                                                                                             | Indicator or focal species                                                                              | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Grassland                                                                                                                | Large herbivorous birds                                                                                 | Long-term  | 12.4                         | 9.4  | 5       |
| Bare soil                                                                                                                | Small granivorous birds                                                                                 | Long-term  | 8.70                         | 13.3 | 5       |
| Bulb and<br>onion like<br>crops                                                                                          | Small omnivorous birds                                                                                  | Long-term  | 49.5                         | 2.3  | 5       |
| Tier 1 (Birds)                                                                                                           |                                                                                                         |            |                              |      |         |
| Leafy<br>vegetables<br>BBCH 10-49                                                                                        | Small granivorous bird<br>"finch" Serin ( <i>Serinus</i><br><i>serinus</i> )                            | Long-term  | 9.62                         | 12.1 | 5       |
| Leafy<br>vegetables<br>BBCH ≥ 50                                                                                         | Small granivorous bird<br>"finch" Serin ( <i>Serinus</i><br><i>serinus</i> )                            | Long-term  | 2.90                         | 40.0 | 5       |
| Leafy<br>vegetables<br>BBCH 10-49                                                                                        | Small omnivorous bird<br>"lark" Woodlark ( <i>Lullula</i><br><i>arborea</i> )                           | Long-term  | 8.32                         | 13.9 | 5       |
| Leafy<br>vegetables<br>BBCH≥50                                                                                           | Small omnivorous bird<br>"lark" Woodlark ( <i>Lullula</i><br><i>arborea</i> )                           | Long-term  | 2.52                         | 46.0 | 5       |
| Leafy<br>vegetables<br>Leaf<br>development<br>BBCH 10-19                                                                 | Medium herbivorous/<br>granivorous bird<br>"pigeon" Wood pigeon<br>( <i>Columba palumbus</i> )          | Long-term  | 17.3                         | 6.7  | 5       |
| Leafy<br>vegetables<br>BBCH 10-19                                                                                        | Small insectivorous bird<br>"wagtail" Yellow<br>wagtail ( <i>Motacilla flava</i> )                      | Long-term  | 8.62                         | 13.5 | 5       |
| Leafy<br>vegetables<br>BBCH≥20                                                                                           | Small insectivorous bird<br>"wagtail" Yellow<br>wagtail ( <i>Motacilla flava</i> )                      | Long-term  | 7.40                         | 15.7 | 5       |
| Maize<br>BBCH≥40                                                                                                         | Medium granivorous<br>bird "gamebird"<br>Partridge ( <i>Perdix perdix</i> )                             | Long-term  | 0.612                        | 190  | 5       |
| Maize<br>BBCH 10-29<br>(to cover<br>birds that<br>visit the<br>fields and<br>consume<br>treated<br>grasses and<br>weeds) | Medium<br>herbivorous/granivorous<br>bird "pigeon" Wood<br>pigeon ( <i>Columba</i><br><i>palumbus</i> ) | Long-term  | 17.3                         | 6.7  | 5       |

| The use of glyphosate in field crops: Uses 1 a-c, 2 a-c, 3 a-b, 6 a-b, 10 a-c $1 \times 1440$ g/ha |                                                                                                         |            |                              |      |         |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Growth stage                                                                                       | Indicator or focal species                                                                              | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Maize<br>BBCH≥40                                                                                   | Medium herbivorous/<br>granivorous bird<br>"pigeon" Wood pigeon<br>(Columba palumbus)                   | Long-term  | 4.35                         | 26.7 | 5       |
| Oilseed rape<br>Late (with<br>seeds)<br>BBCH 30-99                                                 | Small insectivorous bird<br>"dunnock"<br>Dunnock ( <i>Prunella</i><br><i>modularis</i> )                | Long-term  | 2.06                         | 56.3 | 5       |
| Oilseed rape<br>Late (with<br>seeds)<br>BBCH 80-99                                                 | Small granivorous bird<br>"finch"<br>Linnet ( <i>Carduelis</i><br><i>cannabina</i> )                    | Long-term  | 8.70                         | 13.3 | 5       |
| Bulbs and<br>onion like<br>crops<br>BBCH ≥ 20                                                      | Small insectivorous bird<br>"wagtail" Yellow<br>wagtail ( <i>Motacilla flava</i> )                      | Long-term  | 7.40                         | 15.7 | 5       |
| Bulbs &<br>onion like<br>crops<br>BBCH ≥ 40                                                        | Small omnivorous bird<br>"lark" Woodlark ( <i>Lullula</i><br><i>arborea</i> )                           | Long-term  | 4.96                         | 19.4 | 5       |
| Cereals<br>Late season-<br>Seed heads                                                              | Small granivorous/<br>insectivorous bird<br>"bunting"<br>Yellowhammer<br>( <i>Emberiza citronella</i> ) | Long-term  | 3.59                         | 32.3 | 5       |
| Sunflower<br>Late<br>(Flowering,<br>seed<br>ripening)<br>BBCH 61-92                                | Small granivorous/<br>insectivorous bird<br>'bunting'<br>Yellowhammer<br>( <i>Emberiza citronella</i> ) | Long-term  | 7.63                         | 15.2 | 5       |
| Bulbs and<br>onion like<br>crops<br>BBCH 10-19                                                     | Small insectivorous bird<br>"wagtail" Yellow<br>wagtail ( <i>Motacilla flava</i> )                      | Long-term  | 6.47                         | 17.9 | 5       |
| Bulbs &<br>onion like<br>crops<br>BBCH 10-39                                                       | Small omnivorous bird<br>"lark" Woodlark ( <i>Lullula</i><br><i>arborea</i> )                           | Long-term  | 6.24                         | 18.6 | 5       |
| Leafy<br>vegetables<br>BBCH 10-49                                                                  | Small granivorous bird<br>"finch" Serin (Serinus<br>serinus)                                            | Long-term  | 7.21                         | 16.1 | 5       |

| The use of glyphosate in field crops: Uses 1 a-c, 2 a-c, 3 a-b, 6 a-b, 10 a-c $1 \times 1440$ g/ha |                                                                                       |            |                              |     |         |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|------------------------------|-----|---------|
| Growth stage                                                                                       | Indicator or focal species                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER | Trigger |
| Leafy<br>vegetables<br>Leaf<br>development<br>BBCH 10-19                                           | Medium herbivorous/<br>granivorous bird<br>"pigeon" Wood pigeon<br>(Columba palumbus) | Long-term  | 13.0                         | 8.9 | 5       |

| The use of glyphosate in orchards: Uses 4 a-c $2 \times 1440$ g/ha |                            |            |                              |      |         |
|--------------------------------------------------------------------|----------------------------|------------|------------------------------|------|---------|
| Growth stage                                                       | Indicator or focal species | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Screening Step                                                     | o (Birds)                  |            |                              |      |         |
| Orchard                                                            | Small insectivorous birds  | Acute      | 74.1                         | 58.5 | 10      |
| Orchard                                                            | Small insectivorous birds  | Long-term  | 15.3                         | 7.6  | 5       |
| Tier 1 (Birds)                                                     |                            |            |                              |      |         |
| Not required                                                       | -                          | -          | -                            | -    | -       |

| The use of gly         | phosate in vineyards: Use                                                                   | s 5 a-c    |                              |      |         |
|------------------------|---------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| $2 \times 1440$ g/ha   |                                                                                             |            |                              |      |         |
| Growth stage           | Indicator or focal species                                                                  | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Screening Step         | o (Birds)                                                                                   |            |                              |      |         |
| Vineyard               | Small omnivorous birds                                                                      | Acute      | 151.0                        | 28.7 | 10      |
| Vineyard               | Small omnivorous birds                                                                      | Long-term  | 32.7                         | 3.55 | 5       |
| Tier 1 (Birds)         |                                                                                             |            |                              |      |         |
| Vineyard<br>BBCH 10-19 | Small insectivorous bird<br>"redstart"<br>Black Redstart<br>( <i>Phoenicurus ochrurus</i> ) | Long-term  | 9.65                         | 12.0 | 5       |
| Vineyard<br>BBCH 20-39 | Small insectivorous bird<br>"redstart"<br>Black Redstart<br>( <i>Phoenicurus ochrurus</i> ) | Long-term  | 8.31                         | 14.0 | 5       |
| Vineyard<br>BBCH 10-19 | Small granivorous bird<br>"finch" Linnet<br>(Carduelis cannabina)                           | Long-term  | 5.79                         | 20.0 | 5       |

| The use of gly $2 \times 1440$ g/ha | The use of glyphosate in vineyards: Uses 5 a-c $2 \times 1440$ g/ha              |            |                              |      |         |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|--|--|
| Growth stage                        | Indicator or focal species                                                       | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |  |
| Vineyard<br>BBCH 20-39              | Small granivorous bird<br>"finch" Linnet<br>( <i>Carduelis cannabina</i> )       | Long-term  | 4.79                         | 24.2 | 5       |  |  |  |  |
| Vineyard<br>BBCH≥40                 | Small granivorous bird<br>"finch" Linnet<br>(Carduelis cannabina)                | Long-term  | 2.85                         | 40.7 | 5       |  |  |  |  |
| Vineyard<br>BBCH 10-19              | Small omnivorous bird<br>"lark"<br>Woodlark ( <i>Lullula</i><br><i>arborea</i> ) | Long-term  | 5.46                         | 21.2 | 5       |  |  |  |  |
| Vineyard<br>BBCH 20-39              | Small omnivorous bird<br>"lark"<br>Woodlark ( <i>Lullula</i><br><i>arborea</i> ) | Long-term  | 4.53                         | 25.6 | 5       |  |  |  |  |
| Vineyard<br>BBCH ≥ 40               | Small omnivorous bird<br>"lark"<br>Woodlark ( <i>Lullula</i><br><i>arborea</i> ) | Long-term  | 2.77                         | 41.9 | 5       |  |  |  |  |

| The use of glyphosate on railroad tracks: Uses 7a-b |                            |            |                              |      |         |  |  |  |  |
|-----------------------------------------------------|----------------------------|------------|------------------------------|------|---------|--|--|--|--|
| $2 \times 1800$ g/ha                                |                            |            |                              |      |         |  |  |  |  |
| Growth stage                                        | Indicator or focal species | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |  |
| Screening Step                                      | Screening Step (Birds)     |            |                              |      |         |  |  |  |  |
| Grassland                                           | Large herbivorous birds    | Acute      | 54.9                         | 78.9 | 10      |  |  |  |  |
| Bare soil                                           | Small granivorous birds    | Acute      | 44.5                         | 97.5 | 10      |  |  |  |  |
| Grassland                                           | Large herbivorous birds    | Long-term  | 15.5                         | 7.5  | 5       |  |  |  |  |
| Bare soil                                           | Small granivorous birds    | Long-term  | 10.9                         | 10.6 | 5       |  |  |  |  |
| Tier 1 (Birds)                                      |                            |            |                              |      |         |  |  |  |  |
| Not required                                        | -                          | -          | -                            | -    | -       |  |  |  |  |

# The use of glyphosate in agricultural and non-agricultural areas to control invasive species: Uses 8, 9

1 × 1800 g/ha

| Growth Indicator or focal species | Time scale | DDD<br>(mg/kg bw per<br>day) | TER | Trigger |  |
|-----------------------------------|------------|------------------------------|-----|---------|--|
|-----------------------------------|------------|------------------------------|-----|---------|--|

# The use of glyphosate in agricultural and non-agricultural areas to control invasive species: Uses 8, 9

### 1 × 1800 g/ha

| 1 × 1800 g/ha                                                        |                                                                                                         |            |                              |      |         |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Growth<br>stage                                                      | Indicator or focal species                                                                              | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Screening Step                                                       | p (Birds)                                                                                               | •          |                              |      |         |
| Grassland                                                            | Large herbivorous birds                                                                                 | Acute      | 54.9                         | 78.9 | 10      |
| Bare soil                                                            | Small granivorous birds                                                                                 | Acute      | 44.5                         | 97.5 | 10      |
| Bulb and<br>onion like<br>crops                                      | Small omnivorous birds                                                                                  | Acute      | 286                          | 15.2 | 10      |
| Grassland                                                            | Large herbivorous birds                                                                                 | Long-term  | 15.5                         | 7.5  | 5       |
| Bare soil                                                            | Small granivorous birds                                                                                 | Long-term  | 10.9                         | 10.6 | 5       |
| Bulb and<br>onion like<br>crops                                      | Small omnivorous birds                                                                                  | Long-term  | 61.8                         | 1.9  | 5       |
| Tier 1 (Birds)                                                       |                                                                                                         |            |                              |      |         |
| Cereals<br>Early<br>(shoots)<br>autumn-<br>winter<br>BBCH 10 -<br>29 | Large herbivorous bird<br>"goose" Pink-foot goose<br>(Anser brachyrhynchus)                             | Long-term  | 15.5                         | 7.5  | 5       |
| Maize<br>BBCH 10-29                                                  | Medium granivorous<br>bird "gamebird"<br>Partridge ( <i>Perdix</i><br><i>perdix</i> )                   | Long-term  | 2.86                         | 40.6 | 5       |
| Leafy<br>vegetables<br>BBCH 10-19                                    | Medium<br>herbivorous/granivorous<br>bird "pigeon" Wood<br>pigeon ( <i>Columba</i><br><i>palumbus</i> ) | Long-term  | 21.7                         | 5.3  | 5       |
| Leafy<br>vegetables<br>BBCH 10-49                                    | Small granivorous bird<br>"finch" Serin ( <i>Serinus</i><br><i>serinus</i> )                            | Long-term  | 12.0                         | 9.7  | 5       |
| Oilseed rape<br>Late (with<br>seeds)<br>BBCH 30-99                   | Small insectivorous bird<br>"dunnock" Dunnock<br>(Prunella modularis)                                   | Long-term  | 2.58                         | 45.0 | 5       |
| Hops<br>BBCH 10-19                                                   | Small insectivorous bird<br>"finch" Chaffinch<br>( <i>Fringilla coelebs</i> )                           | Long-term  | 8.68                         | 13.4 | 5       |

# The use of glyphosate in agricultural and non-agricultural areas to control invasive species: Uses 8, 9

### 1 × 1800 g/ha

| 1 × 1800 g/ha                                                        |                                                                                                     |            |                              |      |         |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Growth stage                                                         | Indicator or focal species                                                                          | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Cereals<br>Late post-<br>emergence<br>(May-June)<br>BBCH 71 -<br>89  | Small insectivorous bird<br>"passerine"<br>Fan tailed warbler                                       | Long-term  | 21.4                         | 5.4  | 5       |
| Cereals<br>Early<br>autumn-<br>winter<br>BBCH 10-29                  | Large herbivorous bird<br>"goose"<br>Pink-foot goose (Anser<br>brachyrhynchus)                      | Long-term  | 15.5                         | 7.5  | 5       |
| Orchards<br>Spring<br>Summer                                         | Small insectivorous bird<br>"tit" Bluetit ( <i>Parus</i><br><i>caeruleus</i> )                      | Long-term  | 17.4                         | 6.7  | 5       |
| Bulbs and<br>onion like<br>crops<br>BBCH 10-19                       | Small insectivorous bird<br>"wagtail" Yellow<br>wagtail ( <i>Motacilla</i><br><i>flava</i> )        | Long-term  | 10.8                         | 10.7 | 5       |
| Bush and<br>cane fruit.<br>Whole<br>season<br>BBCH 00-79<br>Currants | Small insectivorous bird<br>"warbler" Willow<br>warbler ( <i>Phylloscopus</i><br><i>trochilus</i> ) | Long-term  | 19.4                         | 6.0  | 5       |
| Vineyard<br>BBCH 10-19                                               | Small insectivorous bird<br>"redstart" Black redstart<br>( <i>Phoenicurus ochruros</i> )            | Long-term  | 11.0                         | 10.5 | 5       |
| Maize<br>Leaf<br>development<br>BBCH 10-19                           | Small insectivorous /<br>worm feeding species<br>"thrush" Robin<br>( <i>Erithacus rubecula</i> )    | Long-term  | 5.44                         | 21.3 | 5       |
| Bulbs and<br>onion like<br>crops<br>BBCH 10-39                       | Small omnivorous bird<br>"lark" Woodlark<br>( <i>Lullula arborea</i> )                              | Long-term  | 10.4                         | 11.2 | 5       |
| Higher tier (Bi                                                      | irds)                                                                                               |            |                              |      |         |
| Not needed                                                           | -                                                                                                   | -          | -                            | -    | -       |

| The use of glyphosa 1 × 1440 g/ha        | ate in field crops: Uses                                                                      | 1 a-c, 2 a-c, 3 a- | b, 10 a-c                    |      |         |
|------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|------------------------------|------|---------|
| Crop scenario                            | Indicator species                                                                             | Time scale         | DDD<br>(mg/kg bw<br>per day) | TER  | Trigger |
| Screening Step (Mar                      | mmals)                                                                                        |                    |                              |      |         |
| Bare soil                                | Small granivorous<br>mammal                                                                   | Acute              | 20.7                         | 96.6 | 10      |
| Bulb and onion like crops                | Small herbivorous mammal                                                                      | Acute              | 170                          | 11.7 | 10      |
| Fruiting vegetables                      | Small herbivorous mammal                                                                      | Acute              | 196                          | 10.2 | 10      |
| Bare soil                                | Small granivorous<br>mammal                                                                   | Long-term          | 5.04                         | 9.92 | 5       |
| Bulb and onion like crops                | Small herbivorous mammal                                                                      | Long-term          | 36.9                         | 1.36 | 5       |
| Fruiting vegetables                      | Small herbivorous mammal                                                                      | Long-term          | 55.2                         | 0.91 | 5       |
| Tier 1 (Mammals)                         |                                                                                               |                    |                              | ·    |         |
| Grassland<br>All season                  | Large herbivorous<br>mammal<br>"lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term          | 13.2                         | 7.58 | 5       |
| Grassland<br>Late                        | Small insectivorous<br>mammal "shrew"<br>Common shrew<br>(Sorex araneus)                      | Long-term          | 1.45                         | 69.0 | 5       |
| Grassland<br>All season                  | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )              | Long-term          | 55.2                         | 1.81 | 5       |
| Grassland<br>Late season (seed<br>heads) | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>( <i>Apodemus</i><br>sylvaticus)          | Long-term          | 5.04                         | 19.8 | 5       |
| Leafy vegetables<br>BBCH 10 - 19         | Small insectivorous<br>mammal "shrew"<br>Common shrew<br>(Sorex araneus)                      | Long-term          | 3.21                         | 31.2 | 5       |
| Leafy vegetables<br>BBCH ≥ 20            | Small insectivorous<br>mammal "shrew"<br>Common shrew<br>(Sorex araneus)                      | Long-term          | 1.45                         | 69.0 | 5       |

| The use of glyphosate in field crops: Uses 1 a-c, 2 a-c, 3 a-b, 10 a-c |                                                                                                 |            |                              |      |         |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|--|--|
| 1 × 1440 g/ha                                                          |                                                                                                 |            |                              |      |         |  |  |  |  |
| Crop scenario                                                          | Indicator species                                                                               | Time scale | DDD<br>(mg/kg bw<br>per day) | TER  | Trigger |  |  |  |  |
| Leafy vegetables<br>BBCH 40 - 49                                       | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )                | Long-term  | 55.2                         | 1.81 | 5       |  |  |  |  |
| Leafy vegetables<br>BBCH ≥ 50                                          | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )                | Long-term  | 16.6                         | 6.02 | 5       |  |  |  |  |
| Leafy vegetables<br>All season                                         | Large herbivorous<br>mammal<br>"lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Long-term  | 10.9                         | 9.17 | 5       |  |  |  |  |
| Leafy vegetables<br>BBCH 10 - 49                                       | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus<br>sylvaticus)                    | Long-term  | 5.95                         | 16.8 | 5       |  |  |  |  |
| Leafy vegetables<br>BBCH ≥ 50                                          | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>( <i>Apodemus</i><br><i>sylvaticus</i> )    | Long-term  | 1.76                         | 56.8 | 5       |  |  |  |  |
| Bulbs and onion<br>like crops<br>BBCH ≥ 20                             | Small insectivorous<br>mammal "shrew"<br>Common shrew<br>(Sorex araneus)                        | Long-term  | 1.45                         | 69.0 | 5       |  |  |  |  |

| The use of glyphosate in field crops: Uses 6 a-b $1 \times 1080$ g/ha |                             |            |                              |      |         |  |  |  |
|-----------------------------------------------------------------------|-----------------------------|------------|------------------------------|------|---------|--|--|--|
| Crop scenario                                                         | Indicator species           | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |
| Screening Step (Mammals)                                              |                             |            |                              |      |         |  |  |  |
| Bare soil                                                             | Small granivorous<br>mammal | Acute      | 20.7                         | 96.6 | 10      |  |  |  |
| Bulb and<br>onion like<br>crops                                       | Small herbivorous mammal    | Acute      | 170                          | 11.7 | 10      |  |  |  |
| Fruiting vegetables                                                   | Small herbivorous mammal    | Acute      | 196                          | 10.2 | 10      |  |  |  |

| The use of glyphosate in field crops: Uses 6 a-b $1 \times 1080$ g/ha |                                                                                              |            |                              |      |         |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|--|
| Crop scenario                                                         | Indicator species                                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |
| Bare soil                                                             | Small granivorous<br>mammal                                                                  | Long-term  | 5.04                         | 9.92 | 5       |  |  |  |
| Bulb and<br>onion like<br>crops                                       | Small herbivorous mammal                                                                     | Long-term  | 36.9                         | 1.36 | 5       |  |  |  |
| Fruiting vegetables                                                   | Small herbivorous mammal                                                                     | Long-term  | 55.2                         | 0.91 | 5       |  |  |  |
| Tier 1 (Mamma                                                         | ls)                                                                                          |            | ·                            | ·    |         |  |  |  |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>19                     | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Long-term  | 2.40                         | 41.7 | 5       |  |  |  |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>39                     | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus sylvaticus)                    | Long-term  | 4.46                         | 22.4 | 5       |  |  |  |
| Fruiting<br>vegetables<br>BBCH 10 –<br>49                             | Small herbivorous<br>mammal "vole"<br>Common vole ( <i>Microtus</i><br><i>arvalis</i> )      | Long-term  | 41.4                         | 2.4  | 5       |  |  |  |
| Leafy<br>vegetables<br>All season                                     | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Long-term  | 8.19                         | 12.2 | 5       |  |  |  |

| The use of glyphosate in field crops: Use 3 a-b<br>1 × 540 g/ha (best case) |                                                                                            |            |                              |       |         |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|--|--|--|
| Crop<br>scenario                                                            | Indicator species                                                                          | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |  |  |  |
| Tier 1 (Mamm                                                                | Tier 1 (Mammals)                                                                           |            |                              |       |         |  |  |  |
| Bulbs and<br>onion like<br>crops<br>BBCH ≥ 20                               | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Long-term  | 0.544                        | 183.8 | 5       |  |  |  |
| Grassland<br>All season                                                     | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term  | 4.95                         | 20.2  | 5       |  |  |  |

| The use of glyphosate in field crops: Use 3 a-b<br>1 × 540 g/ha (best case) |                                                                                           |            |                              |      |         |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|--|
| Crop<br>scenario                                                            | Indicator species                                                                         | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |
| Grassland<br>All season                                                     | Small herbivorous<br>mammal "vole"<br>Common vole ( <i>Microtus</i><br><i>arvalis</i> )   | Long-term  | 20.7                         | 4.83 | 5       |  |  |  |
| Grassland<br>Late season<br>(seed heads)                                    | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> ) | Long-term  | 1.89                         | 52.9 | 5       |  |  |  |

| 0.                                                                              | The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c $2 \times 1440$ g/ha          |            |                              |      |         |  |  |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|--|--|
| Crop<br>scenario                                                                | Indicator species                                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |  |  |
| Screening Step                                                                  | o (Mammals)                                                                                  |            |                              |      |         |  |  |  |  |
| Fruiting vegetables                                                             | Small herbivorous mammal                                                                     | Acute      | 216                          | 9.3  | 10      |  |  |  |  |
| Fruiting vegetables                                                             | Small herbivorous mammal                                                                     | Long-term  | 60.7                         | 0.82 | 5       |  |  |  |  |
| Tier 1 (Mamm                                                                    | als) geomean acute endpo                                                                     | int        | ·                            |      |         |  |  |  |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Acute      | 8.55                         | 403  | 10      |  |  |  |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )             | Acute      | 216                          | 16.0 | 10      |  |  |  |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Acute      | 55.6                         | 62.0 | 10      |  |  |  |  |

| The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c 2 × 1440 g/ha    |                                                                                            |            |                              |       |         |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|
| Crop<br>scenario                                                                | Indicator species                                                                          | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>( <i>Apodemus sylvaticus</i> )         | Acute      | 27.2                         | 126.7 | 10      |
| Vineyard<br>Application<br>ground<br>directed                                   | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Acute      | 43.1                         | 80.0  | 10      |
| Vineyard<br>BBCH 10-19                                                          | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Acute      | 25.8                         | 133.6 | 10      |
| Vineyard<br>BBCH 20 –<br>39                                                     | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Acute      | 21.5                         | 160.3 | 10      |
| Vineyard<br>BBCH ≥ 40                                                           | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Acute      | 12.8                         | 269.3 | 10      |
| Vineyard<br>BBCH 10 –<br>19                                                     | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Acute      | 12.0                         | 287.3 | 10      |
| Vineyard<br>BBCH ≥ 20                                                           | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Acute      | 8.55                         | 403.2 | 10      |
| Vineyard<br>Application<br>ground<br>directed                                   | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )           | Acute      | 216                          | 16.0  | 10      |
| Vineyard<br>Application<br>ground<br>directed                                   | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus sylvaticus)                  | Acute      | 27.2                         | 126.7 | 10      |

| The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c $2 \times 1440$ g/ha |                                                                                              |            |                              |      |         |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Crop<br>scenario                                                                    | Indicator species                                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed     | Small insectivorous<br>mammal "shrew"<br>Common shrew (Sorex<br>araneus)                     | Long-term  | 1.60                         | 62.5 | 10      |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed     | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )             | Long-term  | 60.7                         | 1.65 | 10      |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed     | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Long-term  | 12.0                         | 8.33 | 5       |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed     | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus sylvaticus)                    | Long-term  | 6.55                         | 15.3 | 5       |
| Vineyard<br>Application<br>ground<br>directed                                       | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> )   | Long-term  | 9.32                         | 10.7 | 5       |
| Vineyard<br>BBCH 10-19                                                              | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> )   | Long-term  | 5.62                         | 17.8 | 5       |
| Vineyard<br>BBCH 20 –<br>39                                                         | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> )   | Long-term  | 4.62                         | 21.6 | 5       |
| Vineyard<br>BBCH ≥ 40                                                               | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> )   | Long-term  | 2.77                         | 36.1 | 5       |
| Vineyard<br>BBCH 10 –<br>19                                                         | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Long-term  | 3.53                         | 28.3 | 5       |

| The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c $2 \times 1440$ g/ha |                                                                                          |            |                              |      |         |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|
| Crop<br>scenario                                                                    | Indicator species                                                                        | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Vineyard<br>BBCH ≥ 20                                                               | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> ) | Long-term  | 1.60                         | 62.5 | 5       |
| Vineyard<br>Application<br>ground<br>directed                                       | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )         | Long-term  | 60.7                         | 1.6  | 5       |
| Vineyard<br>Application<br>ground<br>directed                                       | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus sylvaticus)                | Long-term  | 6.55                         | 15.3 | 5       |

| The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c $1 \times 720$ g/ha (best case) |                                                                                              |            |                              |       |         |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|--|
| Crop<br>scenario                                                                               | Indicator species                                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |  |
| Tier 1 (Mamm                                                                                   | nals)                                                                                        |            |                              |       |         |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed                | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Long-term  | 0.725                        | 137.9 | 5       |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed                | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )             | Long-term  | 27.6                         | 3.62  | 5       |  |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed                | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Long-term  | 5.46                         | 18.3  | 5       |  |

| The use of glyphosate in orchards and vines: Uses 4 a-c, 5 a-c<br>1 × 720 g/ha (best case) |                                                                                            |            |                              |       |         |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|
| Crop<br>scenario                                                                           | Indicator species                                                                          | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |
| Orchards<br>Application<br>crop directed<br>BBCH <10<br>or not crop<br>directed            | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>(Apodemus sylvaticus)                  | Long-term  | 2.98                         | 33.6  | 5       |
| Vineyard<br>Application<br>ground<br>directed                                              | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term  | 4.24                         | 23.6  | 5       |
| Vineyard<br>BBCH 10-<br>19                                                                 | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term  | 2.56                         | 39.1  | 5       |
| Vineyard<br>BBCH 20 –<br>39                                                                | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term  | 2.10                         | 47.6  | 5       |
| Vineyard<br>BBCH ≥ 40                                                                      | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Long-term  | 1.26                         | 79.4  | 5       |
| Vineyard<br>BBCH 10 –<br>19                                                                | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Long-term  | 1.60                         | 62.5  | 5       |
| Vineyard<br>BBCH ≥ 20                                                                      | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Long-term  | 0.725                        | 137.9 | 5       |
| Vineyard<br>Application<br>ground<br>directed                                              | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtus arvalis</i> )           | Long-term  | 27.6                         | 3.6   | 5       |
| Vineyard<br>Application<br>ground<br>directed                                              | Small omnivorous<br>mammal "mouse"<br>Wood mouse<br>( <i>Apodemus sylvaticus</i> )         | Long-term  | 2.98                         | 33.6  | 5       |

# The use of glyphosate in railroad tracks: Uses 7 a-b $1 \times 1800$ g/ha and $2 \times 1800$ g/ha, 90 days apart

| Crop<br>scenario                         | Indicator species                                                                          | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |
|------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|
| Screening Ste                            | p (Mammals)                                                                                |            |                              |       |         |
| Bare soil                                | Small granivorous<br>mammal                                                                | Acute      | 28.5                         | 77.2  | 10      |
| Fruiting vegetables                      | Small herbivorous mammal                                                                   | Acute      | 270                          | 8.13  | 10      |
| Bare soil                                | Small granivorous<br>mammal                                                                | Long-term  | 6.30                         | 7.94  | 5       |
| Fruiting vegetables                      | Small herbivorous mammal                                                                   | Long-term  | 69.0                         | 0.72  | 5       |
| Tier 1 (Mamm                             | nals) geomean acute endpoin                                                                | ıt         |                              |       |         |
| Grassland<br>All season                  | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> ) | Acute      | 58.7                         | 58.7  | 10      |
| Grassland<br>Late                        | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )   | Acute      | 9.72                         | 354.6 | 10      |
| Grassland<br>All season                  | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )         | Acute      | 246                          | 14.0  | 10      |
| Grassland<br>Late season<br>(seed heads) | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )  | Acute      | 25.9                         | 133.1 | 10      |
| Leafy<br>vegetables<br>BBCH 10 -<br>19   | Small insectivorous<br>mammal "shrew"<br>Commnon shrew (Sorex<br>araneus)                  | Acute      | 13.7                         | 251.6 | 10      |
| Leafy<br>vegetables<br>BBCH ≥ 20         | Small insectivorous<br>mammal "shrew"<br>Commnon shrew ( <i>Sorex</i><br><i>araneus</i> )  | Acute      | 9.72                         | 354.6 | 10      |
| Leafy<br>vegetables<br>BBCH 40 -<br>49   | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )         | Acute      | 246                          | 14.0  | 10      |
| Leafy<br>vegetables<br>BBCH≥50           | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )         | Acute      | 73.6                         | 46.8  | 10      |

|                                          | yphosate in railroad tracks<br>and $2 \times 1800$ g/ha, 90 days                             |            |                              |       |         |
|------------------------------------------|----------------------------------------------------------------------------------------------|------------|------------------------------|-------|---------|
| Crop<br>scenario                         | Indicator species                                                                            | Time scale | DDD<br>(mg/kg bw per<br>day) | TER   | Trigger |
| Leafy<br>vegetables<br>All season        | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Acute      | 63.2                         | 54.5  | 10      |
| Leafy<br>vegetables<br>BBCH 10 –<br>49   | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )    | Acute      | 31.0                         | 111.2 | 10      |
| Leafy<br>vegetables<br>BBCH≥50           | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )    | Acute      | 9.36                         | 368   | 10      |
| Grassland<br>All season                  | Large herbivorous<br>mammal "lagomorph"<br>Brown hare ( <i>Lepus</i><br><i>europaeus</i> )   | Long-term  | 16.5                         | 6.1   | 5       |
| Grassland<br>Late                        | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Long-term  | 1.81                         | 55.2  | 5       |
| Grassland<br>All season                  | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )           | Long-term  | 69.0                         | 1.4   | 5       |
| Grassland<br>Late season<br>(seed heads) | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )    | Long-term  | 6.30                         | 15.9  | 5       |
| Leafy<br>vegetables<br>BBCH 10 -<br>19   | Small insectivorous<br>mammal "shrew"<br>Commnon shrew ( <i>Sorex</i><br><i>araneus</i> )    | Long-term  | 4.01                         | 24.9  | 5       |
| Leafy<br>vegetables<br>BBCH ≥ 20         | Small insectivorous<br>mammal "shrew"<br>Commnon shrew ( <i>Sorex</i><br><i>araneus</i> )    | Long-term  | 1.81                         | 55.2  | 5       |
| Leafy<br>vegetables<br>BBCH 40 -<br>49   | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )           | Long-term  | 69.0                         | 1.4   | 5       |

| 0.                                     | The use of glyphosate in railroad tracks: Uses 7 a-b $1 \times 1800$ g/ha and $2 \times 1800$ g/ha, 90 days apart |            |                              |      |         |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|------------------------------|------|---------|--|--|
| Crop<br>scenario                       | Indicator species                                                                                                 | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |  |  |
| Leafy<br>vegetables<br>BBCH≥50         | Small herbivorous<br>mammal "vole"<br>Common vole<br>( <i>Microtulus arvalis</i> )                                | Long-term  | 20.7                         | 4.8  | 5       |  |  |
| Leafy<br>vegetables<br>All season      | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> )                      | Long-term  | 13.6                         | 7.4  | 5       |  |  |
| Leafy<br>vegetables<br>BBCH 10 –<br>49 | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )                         | Long-term  | 7.44                         | 13.4 | 5       |  |  |
| Leafy<br>vegetables<br>BBCH ≥ 50       | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )                         | Long-term  | 2.19                         | 45.7 | 5       |  |  |

| The use of glyphosate in invasives species: Uses 8 and 9 |                          |            |                              |      |         |
|----------------------------------------------------------|--------------------------|------------|------------------------------|------|---------|
| $1 \times 1800$ g/ha                                     | L                        |            |                              |      |         |
| Crop<br>scenario                                         | Indicator species        | Time scale | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Screening Ste                                            | p (Mammals)              |            |                              |      |         |
| Bare soil                                                | Small granivorous mammal | Acute      | 25.9                         | 77.2 | 10      |
| Bush and cane fruit                                      | Small herbivorous mammal | Acute      | 147                          | 13.6 | 10      |
| Bulbs and<br>onion like<br>crops                         | Small herbivorous mammal | Acute      | 213                          | 9.38 | 10      |
| Fruiting vegetables                                      | Small herbivorous mammal | Acute      | 246                          | 8.13 | 10      |
| Bare soil                                                | Small granivorous mammal | Long-term  | 6.30                         | 7.94 | 5       |
| Bush and cane fruit                                      | Small herbivorous mammal | Long-term  | 41.4                         | 1.21 | 5       |
| Bulbs and<br>onion like<br>crops                         | Small herbivorous mammal | Long-term  | 46.1                         | 1.09 | 5       |

| The use of gly $1 \times 1800$ g/ha               | phosate in invasives specie                                                                  | es: Uses 8 and 9 | )                            |      |         |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------|------------------------------|------|---------|
| Crop<br>scenario                                  | Indicator species                                                                            | Time scale       | DDD<br>(mg/kg bw per<br>day) | TER  | Trigger |
| Fruiting vegetables                               | Small herbivorous mammal                                                                     | Long-term        | 69.0                         | 0.72 | 5       |
| Tier 1 (Mamm                                      | nals) geomean acute endpoin                                                                  | ıt               |                              |      |         |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>19 | Small insectivorous<br>mammal "shrew"<br>Common shrew (Sorex<br>araneus)                     | Acute            | 13.7                         | 146  | 10      |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>39 | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )    | Acute            | 31.0                         | 64.6 | 10      |
| Cereals<br>Early<br>(shoots)                      | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Acute            | 75.8                         | 26.4 | 10      |
| Fruiting<br>vegetables<br>BBCH 10 –<br>49         | Small herbivorous<br>mammal "vole"<br>Common vole ( <i>Microtus</i><br><i>arvalis</i> )      | Acute            | 246                          | 8.15 | 10      |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>19 | Small insectivorous<br>mammal "shrew"<br>Common shrew ( <i>Sorex</i><br><i>araneus</i> )     | Long-term        | 4.01                         | 24.9 | 5       |
| Bulbs &<br>onion like<br>crops<br>BBCH 10 –<br>39 | Small omnivorous<br>mammal "mouse"<br>Wood mouse ( <i>Apodemus</i><br><i>sylvaticus</i> )    | Long-term        | 7.44                         | 13.4 | 5       |
| Cereals<br>Early<br>(shoots)                      | Large herbivorous<br>mammal "lagomorph"<br>Rabbit ( <i>Oryctolagus</i><br><i>cuniculus</i> ) | Long-term        | 21.3                         | 4.7  | 5       |
| Fruiting<br>vegetables<br>BBCH 10 –<br>49         | Small herbivorous<br>mammal "vole"<br>Common vole ( <i>Microtus</i><br><i>arvalis</i> )      | Long-term        | 69.0                         | 1.4  | 5       |

Risk from bioaccumulation and food chain behaviour

Since the log POW values of glyphosate and AMPA do not esceed 3 (log POW < -3.2 and -2.47 respectively), formal assessment of the secondary poisoning risk to birds and mammals is not required.

Risk from consumption of contaminated water

The leaf scenario does not apply to the proposed uses of MON 52276; water that is collected in leaf whorls after application and applies to leafy vegetables forming heads or with a morphology that facilitates collection of rain / irrigation water sufficiently to attract birds, i.e. for the before named crops at BBCH  $\ge$  41.

Puddle scenario, Screening step

Avian: 1800 / 116 = TER of 15.5 which is less than 50. No further assessment required. Mammal: 1800 / 50 = TER of 36 which is less than 50. No further assessment required.

# Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)\*

\* This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.

| Group                                    | Test substance                    | Time-scale<br>(Test type) | End point                           | Toxicity <sup>1</sup>                                                                   |
|------------------------------------------|-----------------------------------|---------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|
| Laboratory tests                         | •                                 |                           | •                                   | ·                                                                                       |
| Fish                                     |                                   |                           |                                     |                                                                                         |
| Oncorhynchus mykiss                      | a.s.<br>(Glyphosate K-<br>salt)   | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | >1193 mg<br>a.e./L <sub>(nom)</sub><br>149 mg<br>a.e./L <sub>(nom)</sub>                |
| Oncorhynchus mykiss                      | a.s.<br>(Glyphosate<br>acid)      | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | >100 mg<br>a.e./L <sub>(nom)</sub><br>32 mg a.e./L <sub>(nom)</sub>                     |
| Oncorhynchus mykiss                      | a.s.<br>(Glyphosate<br>IPA-salt)  | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | >1001 mg<br>a.e./L <sub>(nom)</sub><br>236 mg<br>a.e./L <sub>(nom)</sub>                |
| Oncorhynchus mykiss                      | a.s.<br>(Glyphosate<br>technical) | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | >87.7 mg<br>a.e./L <sub>(gmm)</sub><br>87.7 mg<br>a.e./L <sub>(gmm)</sub>               |
| Salmo gairdneri<br>(Oncorhynchus mykiss) | a.s.<br>(Glyphosate<br>IPA-salt)  | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | >463 mg<br>a.e./ $L_{(nom)}$ <sup>1)</sup><br>463 mg<br>a.e./ $L_{(nom)}$ <sup>1)</sup> |
| Salmo gairdneri<br>(Oncorhynchus mykiss) | a.s.<br>(Glyphosate<br>technical) | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub><br>NOEC | 71.4 mg<br>a.e./ $L_{(nom)}^{2)}$<br>34.9 mg<br>a.e./ $L_{(nom)}^{2)}$                  |
| Lepomis macrochirus                      | a.s.<br>(Glyphosate               | Acute 96 hr<br>(static)   | Mortality, LC <sub>50</sub>         | >32 mg<br>a.e./L <sub>(nom)</sub><br>32 mg a.e./L <sub>(nom)</sub>                      |

| Group                              | Test substance acid)              | Time-scale<br>(Test type)        | End point                           | Toxicity <sup>1</sup>                                                                                                                  |
|------------------------------------|-----------------------------------|----------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Lepomis macrochirus                | a.s.<br>(Glyphosate<br>technical) | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub><br>NOEC | >119 mg<br>a.e./ $L_{(gmm)}$ <sup>3)</sup><br>119 mg<br>a.e./ $L_{(gmm)}$ <sup>3)</sup>                                                |
| Lepomis macrochirus                | a.s.<br>(Glyphosate<br>technical) | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub><br>NOEC | $\begin{array}{c} 100 < LC_{50} < \\ 140 \mbox{ mg} \\ a.e./L_{(nom)} \ ^{4)} \\ 100 \mbox{ mg} \\ a.e./L_{(nom)} \ ^{4)} \end{array}$ |
| Cyprinus carpio                    | a.s.<br>(Glyphosate<br>acid)      | Acute 96 hr<br>(semi-<br>static) | Mortality, LC <sub>50</sub><br>NOEC | >100 mg<br>a.e./L <sub>(nom)</sub><br>100 mg<br>a.e./L <sub>(nom)</sub>                                                                |
| Brachydanio rerio<br>(Danio rerio) | a.s.<br>(Glyphosate<br>technical) | Acute 96 hr<br>(semi-<br>static) | Mortality, LC <sub>50</sub><br>NOEC | >123 mg<br>a.e./ $L_{(nom)}^{5)}$<br>56 mg a.e./ $L_{(nom)}^{5)}$                                                                      |
| Leuciscus idus                     | a.s.<br>(Glyphosate<br>IPA-salt)  | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub><br>NOEC | >2282 mg<br>a.e./ $L_{(nom)}^{6)}$<br>2282 mg<br>a.e./ $L_{(nom)}^{6)}$                                                                |
| Poecilia reticulata                | a.s.<br>(Glyphosate)              | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | 68.78 mg a.e./L<br>(male) #<br>70.87 mg a.e./L<br>(female) #                                                                           |
| Cyprinus carpio                    | a.s.<br>(Glyphosate)              | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | 6.75 mg a.e./L #                                                                                                                       |
| Oncorhynchus mykiss                | AMPA                              | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | >100 mg<br>AMPA/L <sub>(nom)</sub>                                                                                                     |
| Oncorhynchus mykiss                | AMPA                              | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | >180 mg<br>AMPA/L <sub>(nom)</sub>                                                                                                     |
| Poecilia reticulata                | АМРА                              | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | 180 mg<br>AMPA/L (male)<br>#<br>164.3 mg<br>AMPA/L<br>(female) #                                                                       |
| Oncorhynchus mykiss                | MON-52276                         | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | >989 mg prep./L<br>(>306 mg a.e/L<br>(mm))                                                                                             |
| Cyprinus carpio                    | MON-52276                         | Acute 96 hr<br>(static)          | Mortality, LC <sub>50</sub>         | >895 mg prep./L<br>(>277 mg a.e/L<br>(mm))                                                                                             |

| Group               | Test substance               | Time-scale<br>(Test type)                             | End point                                       | Toxicity <sup>1</sup>                                 |
|---------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Brachydanio rerio   | a.s.<br>(Glyphosate<br>acid) | Chronic<br>(semi-<br>static)                          | Mortality and<br>behaviour NOEC                 | 1 mg a.e./L <sub>(nom)</sub>                          |
| Danio rerio         | a.s.<br>(Glyphosate)         | test with<br>zebrafish<br>embryos                     | Mortality, LC <sub>50</sub> (96h)               | >100 mg a.e./L<br>(nom)) #                            |
| Danio rerio         | a.s.<br>(Glyphosate)         | Test with<br>zebrafish<br>embryos.                    | Mortality, $LC_{50}$<br>Heart rate $EC_{10}$    | 98.4 mg a.e./L<br>(nom) #<br>7.27 mg<br>a.e./L(nom) # |
|                     |                              |                                                       | Hatching rate EC <sub>10</sub>                  | 26.2 mg<br>a.e./L <sub>(nom)</sub> #                  |
|                     |                              |                                                       | Hatching rate EC <sub>50</sub>                  | 37.9 mg<br>a.e./L <sub>(nom)</sub> #                  |
|                     |                              |                                                       | Developmental delays EC <sub>10</sub>           | 21.3 mg<br>a.e./L <sub>(nom)</sub> #                  |
|                     |                              |                                                       | Malformations EC <sub>10</sub>                  | 30.2 mg<br>a.e./L <sub>(nom)</sub> #                  |
| Danio rerio         | a.s.<br>(Glyphosate)         | Embryo (5h<br>post<br>fertilisation<br>)              | Mortality, LC <sub>50</sub>                     | 66.04 mg a.e./L<br>(nom) #                            |
| Danio rerio         | a.s.<br>(Glyphosate)         | Early<br>developme                                    | Morphological<br>NOEC                           | 10 mg a.e./L <sub>(nom)</sub><br>#                    |
|                     |                              | nt of larval                                          | Surface tension of chorion NOEC                 | < 1 mg a.e./L                                         |
|                     |                              |                                                       | Hatching rate NOEC                              | (nom) #<br>200 mg a.e./L<br>(nom) #                   |
|                     |                              |                                                       | Larvae abnormality                              | 10 mg a.e./L <sub>(nom)</sub><br>#                    |
| Pimephales promelas | a.s.<br>(glyphosate<br>acid) | Chronic,<br>255 d<br>FFLC,<br>flow-<br>through        | Survival, growth,<br>reproduction NOEC          | 25.7 mg a.e./L (nom) <sup>7)</sup>                    |
| Pimephales promelas | АМРА                         | Chronic<br>(flow-<br>through)                         | Hatching success,<br>survival or growth<br>NOEC | 12 mg<br>AMPA/L <sub>(mm)</sub>                       |
| Danio rerio         | AMPA                         | acute<br>toxicity to<br>zebrafish<br>embryos<br>(96h) | Mortality, LC <sub>50</sub>                     | >100 mg<br>AMPA/L (mm) #                              |

| Group                 | Test substance                    | Time-scale<br>(Test type)                               | End point                   | Toxicity <sup>1</sup>                            |
|-----------------------|-----------------------------------|---------------------------------------------------------|-----------------------------|--------------------------------------------------|
| Aquatic invertebrates |                                   |                                                         |                             |                                                  |
| Daphnia magna         | a.s.<br>(Glyphosate K<br>– salt)  | 48 h (static)                                           | Mortality, EC <sub>50</sub> | 278 mg<br>a.e./L <sub>(mm)</sub>                 |
| Daphnia magna         | a.s.<br>(Glyphosate<br>IPA-salt)  | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >471 mg<br>a.e./L <sub>(im)</sub>                |
| Daphnia magna         | a.s.<br>(Glyphosate<br>technical) | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >334 mg<br>a.e./L <sub>(im)</sub>                |
| Daphnia magna         | a.s.<br>(Glyphosate<br>acid)      | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >100 mg<br>a.e./L <sub>(nom)</sub>               |
| Daphnia magna         | a.s.<br>(Glyphosate<br>acid)      | 48 h (static)                                           | Mortality, EC <sub>50</sub> | 40 mg<br>a.e./L <sub>(nom)</sub>                 |
| Daphnia magna         | a.s.<br>(Glyphosate)              | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >100 mg<br>a.e./L <sub>(nom)</sub>               |
| Daphnia magna         | a.s.<br>(Glyphosate<br>IPA-salt)  | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >45.64 mg<br>a.e./L <sub>(nom)</sub>             |
| Daphnia magna         | a.s.<br>(Glyphosate<br>technical) | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >62.5 mg<br>a.e./L <sub>(nom)</sub>              |
| Daphnia magna         | a.s.<br>(Glyphosate<br>IPA-salt)  | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >581 mg<br>a.e./L <sub>(nom)</sub> <sup>8)</sup> |
| Daphnia magna         | AMPA                              | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >100 mg<br>AMPA/L <sub>(nom)</sub>               |
| Daphnia magna         | AMPA                              | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >180 mg<br>AMPA/L <sub>(nom)</sub>               |
| Daphnia magna         | AMPA                              | 48 h (static)                                           | Mortality, EC <sub>50</sub> | 690 mg<br>AMPA/L <sub>(nom)</sub> <sup>9)</sup>  |
| Daphnia magna         | НМРА                              | 48 h (static)                                           | Mortality, EC <sub>50</sub> | >100 mg<br>HMPA/L <sub>(nom)</sub>               |
| Crassostrea gigas     | a.s.<br>(Glyphosate<br>acid)      | 48 h (static)                                           | Mortality, EC <sub>50</sub> | 40 mg<br>a.e./L <sub>(nom)</sub>                 |
| Hydra attenuate       | a.s.<br>(Glyphosate)              | 96 h (static,<br>assumed 'no<br>renewal<br>indicated in | Mortality, LC <sub>50</sub> | 18.2 mg a.e./L<br>#                              |

| Group                | Test substance                   | Time-scale<br>(Test type) | End point                                                    | Toxicity <sup>1</sup>                       |
|----------------------|----------------------------------|---------------------------|--------------------------------------------------------------|---------------------------------------------|
|                      |                                  | the paper)                |                                                              |                                             |
| Crassostrea gigas    | a.s.<br>(Glyphosate)             | 48 h                      | Mortality, LC <sub>50</sub>                                  | >100 mg<br>a.e./L <sub>(mm)</sub> #         |
|                      |                                  |                           | Abnormality rates in<br>D-shaped larvae,<br>EC <sub>50</sub> | 27.1 mg<br>a.e./L <sub>(mm)</sub> #         |
|                      |                                  |                           | Larvae abnormality, EC <sub>10</sub>                         | 13.457 mg<br>a.e./L <sub>(mm)</sub> #       |
| Crassostrea gigas    | AMPA                             | 48 h                      | Mortality, LC <sub>50</sub>                                  | >100 mg<br>AMPA/L <sub>(mm)</sub> #         |
|                      |                                  |                           | Abnormality rates in<br>D-shaped larvae,<br>EC <sub>50</sub> | 46.1 mg<br>AMPA/L <sub>(mm)</sub> #         |
|                      |                                  |                           | Larvae abnormality, EC <sub>10</sub>                         | 10.299 mg<br>AMPA/L <sub>(mm)</sub> #       |
| Pomacea canaliculata | a.s.<br>(Glyphosate)             | 96 h                      | Mortality, LC <sub>50</sub>                                  | 174.7 mg<br>a.e./L #                        |
| Daphnia magna        | MON-52276                        | 48 h (flow-<br>through)   | Mortality, EC <sub>50</sub>                                  | 676 mg<br>prep./L<br>(209 mg a.e/L<br>(mm)) |
| Daphnia magna        | a.s.<br>(Glyphosate<br>acid)     | 21 d (semi-<br>static)    | Reproduction, NOEC                                           | 12.5 mg<br>a.e./L <sub>(nom)</sub>          |
| Daphnia magna        | a.s.<br>(Glyphosate)             | 21 d (semi-<br>static)    | Reproduction, NOEC                                           | 56 mg<br>a.e./L <sub>(nom)</sub>            |
| Daphnia magna        | a.s.<br>(Glyphosate<br>IPA-salt) | 21 d (semi-<br>static)    | Reproduction, NOEC                                           | 42.90 mg<br>a.e./L <sub>(nom)</sub>         |
| Daphnia magna        | a.s.<br>(Glyphosate)             | 21 d (semi-<br>static)    | Reproduction, EC <sub>10</sub>                               | 22.65 mg<br>a.e./L <sub>(nom)</sub>         |
| Daphnia magna        | a.s.<br>(Glyphosate)             | 21 d (semi-<br>static)    | Reproduction, NOEC                                           | 100 mg<br>a.e./L <sub>(nom)</sub>           |
| Daphnia magna        | a.s.<br>(Glyphosate)             | 21 d (flow-<br>through)   | Reproduction, NOEC                                           | 41 mg<br>a.e./L <sub>(mm)</sub>             |
| Daphnia magna        | АМРА                             | 21 d (semi-<br>static)    | Reproduction, NOEC                                           | 15 mg<br>AMPA/L <sub>(nom)</sub>            |

| Group                                                            | Test substance                   | Time-scale<br>(Test type)                            | End point                                                                                                                 | Toxicity <sup>1</sup>                                                                                                                                   |
|------------------------------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Cherax quadricarinatus</i> (juveniles)                        | a.s.<br>(Glyphosate)             | Chronic, 60<br>d (semi-<br>static)                   | Mortality                                                                                                                 | 33% mortality<br>at 40 mg a.e./L<br>#                                                                                                                   |
|                                                                  |                                  |                                                      | Weight gain                                                                                                               | 35% decrease<br>in weight gain<br>at 40 mg a.e./L<br>#                                                                                                  |
| <i>Neohelice granulate</i> (adult females)                       | a.s.<br>(Glyphosate)             | Chronic, 3<br>months pre-<br>reproductiv<br>e period | Weight gain, NOEC                                                                                                         | <0.02 mg<br>a.e./L #                                                                                                                                    |
| <i>Neohelice granulate</i> (adult males)                         | a.s.<br>(Glyphosate)             | Chronic, 30<br>d                                     | Weight gain, NOEC                                                                                                         | <1.27 mg<br>a.e./L #                                                                                                                                    |
| Sediment-dwelling organis                                        | ms                               |                                                      |                                                                                                                           |                                                                                                                                                         |
| Chironomus riparius                                              | a.s.<br>(Glyphosate<br>acid)     | Water<br>spiked<br>(static)                          | NOEC                                                                                                                      | 1000 mg<br>a.e./L <sup>10)</sup>                                                                                                                        |
| Algae                                                            |                                  |                                                      |                                                                                                                           |                                                                                                                                                         |
| Pseudokirchneriella<br>subcapitata (Raphidocelis<br>subcapitata) | a.s.<br>(Glyphosate<br>IPA-salt) | 96 h (static)                                        | Growth rate:<br>72h ErC10<br>72h ErC20<br>72h NOErC<br>96h ErC10<br>96h ErC20<br>96h ErC50                                | 4.23 mg a.e./L<br>(mm)<br>7.6 mg a.e./L<br>(mm)<br>2.21 mg a.e./L<br>(mm)<br>7.11 mg a.e./L<br>(mm)<br>10.8 mg a.e./L<br>(mm)<br>23.7 mg a.e./L<br>(mm) |
|                                                                  |                                  |                                                      | <ul> <li>96h NOErC</li> <li>Yield:</li> <li>72h EyC10</li> <li>72h EyC20</li> <li>72h EyC50</li> <li>72h NOEyC</li> </ul> | 4.87 mg a.e./L<br>(mm)<br>2.17 mg a.e./L<br>(mm)<br>3.22 mg a.e./L<br>(mm)<br>6.85 mg a.e./L<br>(mm)<br>2.21 mg a.e./L                                  |

| Group                          | Test substance         | Time-scale<br>(Test type) | End point    | Toxicity <sup>1</sup>            |
|--------------------------------|------------------------|---------------------------|--------------|----------------------------------|
|                                |                        |                           |              | (mm)                             |
|                                |                        |                           | 96h EyC10    | 3.05 mg a.e./L                   |
|                                |                        |                           | 96h EyC20    | (mm)<br>4.19 mg a.e./L<br>(mm)   |
|                                |                        |                           | 96h EyC50    | 7.63 mg a.e./L                   |
|                                |                        |                           | 96h NOEyC    | 2.21 mg a.e./L                   |
| Selenastrum                    | a.s.                   | 96 h (static)             | Growth rate: |                                  |
| caprocornutum<br>(Raphidocelis | (Glyphosate technical) |                           | 72h ErC10    | 62.6 mg<br>a.e./L <sup>11)</sup> |
| subcapitata)                   |                        |                           | 72h ErC20    | 132 mg<br>a.e./L <sup>11)</sup>  |
|                                |                        |                           | 72h ErC50    | 469 mg<br>a.e./L <sup>11)</sup>  |
|                                |                        |                           | 72h NOErC    | 5.6 mg a.e./ $L_{(nom)}^{11}$    |
|                                |                        |                           | Yield:       |                                  |
|                                |                        |                           | 72h EyC10    | 5.54 mg<br>a.e./L <sup>11)</sup> |
|                                |                        |                           | 72h EyC20    | 14.6 mg<br>a.e./L <sup>11)</sup> |
|                                |                        |                           | 72h EyC50    | 75.9 mg<br>a.e./L <sup>11)</sup> |
|                                |                        |                           | 72h NOEyC    | 5.6 mg a.e./ $L_{(nom)}^{11}$    |
| Selenastrum                    | a.s.                   | 120h                      | Growth rate: |                                  |
| caprocornutum<br>(Raphidocelis | (Glyphosate            | (static)                  | 72h ErC10    | 5.74 mg a.e./L                   |
| subcapitata)                   | acid)                  |                           | 72h ErC20    | (nom)<br>8.91 mg a.e./L          |
|                                |                        |                           | 72h ErC50    | (nom)<br>17.3 mg a.e./L<br>(nom) |
|                                |                        |                           | 72h NOErC    | 10 mg a.e./L                     |
|                                |                        |                           | Yield:       |                                  |
|                                |                        |                           | 72h EyC10    | 4.84 mg a.e./L                   |
|                                |                        |                           | 72h EyC20    | (nom)<br>7.59 mg a.e./L          |
|                                |                        |                           | 72h EyC50    | (nom)<br>16.4 mg a.e./L<br>(nom) |
|                                |                        |                           | 72h NOEyC    | (nom)<br>10 mg a.e./L            |

| Group                         | Test substance | Time-scale<br>(Test type) | End point         | Toxicity <sup>1</sup>                |
|-------------------------------|----------------|---------------------------|-------------------|--------------------------------------|
| Pseudokirchneriella           | a.s.           | 72 h (static)             | Growth rate:      |                                      |
| subcapitata                   | (Glyphosate)   | 72 II (static)            | 72h ErC10         | 33 mg a.e./L                         |
| (Raphidocelis<br>subcapitata) |                |                           | 701 E-050         | (nom                                 |
| 2000 001 0000 (               |                |                           | 72h ErC50         | 54 mg a.e./L                         |
|                               |                |                           | 72h NOErC         | 32 mg a.e./L                         |
|                               |                |                           | Biomass:          |                                      |
|                               |                |                           | 72h EbC10         | 18 mg a.e./L                         |
|                               |                |                           | 72h EbC50         | 48 mg a.e./L                         |
|                               |                |                           | 72h NOEbC         | 10 mg a.e./L                         |
| Selenasstrum                  | a.s.           | 168 h                     | Growth rate:      |                                      |
| capricornutum                 | (Glyphosate    | (static)                  | 72h ErC10         | < 10 mg a.e./L                       |
| (Raphidocelis<br>subcapitata) | technical)     |                           | 701 5 620         | (nom)                                |
| she cup hund)                 |                |                           | 72h ErC20         | 10.8 mg a.e./L                       |
|                               |                |                           | 72h ErC50         | 20.1 mg a.e./L (nom)                 |
|                               |                |                           | Yield:            | < 10 mg a.e./L                       |
|                               |                |                           | 72h EyC10         | (nom)                                |
|                               |                |                           | 72h EyC20         | 10.25 mg<br>a.e./L (nom)<br>12.11 mg |
|                               |                |                           | 72h EyC50         | a.e./L (nom)                         |
| Anabaena flos-aquae           | a.s.           | 168 h                     | Growth rate:      |                                      |
|                               | (Glyphosate    | (static)                  | 72h ErC10         | 7.63 mg a.e./L                       |
|                               | technical)     |                           | 72h ErC20         | (nom)<br>12.7 mg a.e./L              |
|                               |                |                           | 72h ErC50         | (nom)<br>33.4 mg a.e./L<br>(nom)     |
|                               |                |                           | 96h <sup>\$</sup> |                                      |
|                               |                |                           | Yield:            | 9.97 mg a.e./L                       |
|                               |                |                           | 72h EyC10         | (nom)                                |
|                               |                |                           |                   | 11.8 mg a.e./L                       |
|                               |                |                           | 72h EyC20         | (nom)<br>16.4 mg a.e./L              |

| Group                        | Test substance         | Time-scale<br>(Test type) | End point                                                                  | Toxicity <sup>1</sup>              |
|------------------------------|------------------------|---------------------------|----------------------------------------------------------------------------|------------------------------------|
|                              |                        |                           | 72h EyC50                                                                  | (nom)                              |
|                              |                        |                           | 96h <sup>\$</sup>                                                          |                                    |
| Navicula pelliculosa         | a.s.                   | 168 h                     | Growth rate:                                                               | -                                  |
|                              | (Glyphosate technical) | (static)                  | 72h ErC10 <sup>s</sup><br>72h ErC20 <sup>s</sup><br>72h ErC50 <sup>s</sup> |                                    |
|                              |                        |                           | Yield:                                                                     |                                    |
|                              |                        |                           | 72h EyC10 <sup>s</sup><br>72h EyC20 <sup>s</sup><br>72h EyC50 <sup>s</sup> |                                    |
| Skeletonema costatum         | a.s.                   | 120 h                     | Growth rate:                                                               |                                    |
|                              | (Glyphosate            | (static)                  | 72h ErC10                                                                  | 1.87 mg a.e./L                     |
|                              | acid)                  |                           | 72h ErC20                                                                  | (nom)<br>2.98 mg a.e./L<br>(nom)   |
|                              |                        |                           | 72h ErC50                                                                  | 13.5 mg a.e./L                     |
|                              |                        |                           | 72h NOErC                                                                  | (nom)<br>5.6 mg a.e./L<br>(nom)    |
|                              |                        |                           | Yield:                                                                     |                                    |
|                              |                        |                           | 72h EyC10                                                                  | 5.22 mg a.e./L                     |
|                              |                        |                           | 72h EyC20                                                                  | 6.38 mg a.e./L<br>(nom)            |
|                              |                        |                           | 72h EyC50                                                                  | 8.99 mg a.e./L                     |
|                              |                        |                           | 72h NOEyC                                                                  | 5.6 mg a.e./L (nom)                |
| Pseudokirchneriella          | AMPA                   | 72h (static)              | Growth rate:                                                               |                                    |
| subcapitata<br>(Raphidocelis |                        |                           | 72h ErC10                                                                  | 92.8 mg<br>AMPA/L (nom)            |
| subcapitata)                 |                        |                           | 72h ErC20                                                                  | 119 mg<br>AMPA/L (nom)             |
|                              |                        |                           | 72h ErC50                                                                  | 191 mg<br>AMPA/L (nom)             |
|                              |                        |                           | 72h NOErC                                                                  | 100 mg<br>AMPA/L (nom)             |
|                              |                        |                           | Yield:                                                                     |                                    |
|                              |                        |                           | 72h EyC10                                                                  | 58.2 mg<br>AMPA/L <sub>(nom)</sub> |
|                              |                        |                           | 72h EyC20                                                                  | 72.5 mg<br>AMPA/L <sub>(nom)</sub> |

| Group                                                         | Test substance | Time-scale<br>(Test type) | End point     | Toxicity <sup>1</sup>              |
|---------------------------------------------------------------|----------------|---------------------------|---------------|------------------------------------|
|                                                               |                | (Test type)               |               | 110                                |
|                                                               |                |                           | 72h EyC50     | 110 mg<br>AMPA/L (nom)<br>46 mg    |
|                                                               |                |                           | 72h NOEyC     | AMPA/L (nom)                       |
| Pseudokirchneriella                                           | HMPA           | 72h (static)              | Growth rate:  |                                    |
| subcapitata<br>(Raphidocelis                                  |                |                           | 72h ErC10     | >120 mg<br>HMPA/L (nom)            |
| subcapitata)                                                  |                |                           | 72h ErC20     | >120 mg<br>HMPA/L <sub>(nom)</sub> |
|                                                               |                |                           | 72h ErC50     | >120 mg<br>HMPA/L <sub>(nom)</sub> |
|                                                               |                |                           | 72h NOErC     | 60 mg<br>HMPA/L (nom)              |
|                                                               |                |                           | Yield:        |                                    |
|                                                               |                |                           | 72h EyC10     | 57.8 mg<br>HMPA/L (nom)            |
|                                                               |                |                           | 72h EyC20     | 80.4 mg<br>HMPA/L <sub>(nom)</sub> |
|                                                               |                |                           | 72h EyC50     | > 120 mg<br>HMPA/L (nom)           |
|                                                               |                |                           | 72h NOEyC     | 60 mg<br>HMPA/L <sub>(nom)</sub>   |
| Selenastrum<br>capricornutum<br>(Raphidocelis<br>subcapitata) | MON-52276      | 72 h (static)             | Data gap      |                                    |
| Higher plant                                                  |                |                           | I             | L                                  |
| Lemna minor                                                   | a.s.           | 7d (static)               | Fronds number |                                    |
|                                                               | (Glyphosate    |                           | Growth rate:  |                                    |
|                                                               | IPA-salt)      |                           | 7d ErC10      |                                    |
|                                                               |                |                           |               | 8.16 mg a.e./L                     |
|                                                               |                |                           | 7d ErC20      | (nom)<br>12.8 mg a.e./L            |
|                                                               |                |                           | 7d ErC50      | (nom)<br>30.3 mg a.e./L            |
|                                                               |                |                           | 7d NOErC      | (nom)<br>8.65 mg a.e./L<br>(nom)   |
|                                                               |                |                           | Yield:        |                                    |
|                                                               |                |                           | 7d EyC10      | 7.8 mg a.e./L                      |
|                                                               |                |                           | 7d EyC20      | (nom)<br>10.3 mg a.e./L            |
|                                                               |                |                           | 7d EyC50      | (nom)<br>16.5 mg a.e./L            |

| Group       | Test substance    | Time-scale<br>(Test type) | End point                     | Toxicity <sup>1</sup>              |
|-------------|-------------------|---------------------------|-------------------------------|------------------------------------|
|             |                   | (Test type)               |                               |                                    |
|             |                   |                           | 7d NOEyC                      | (nom)<br>8.65 mg a.e./L<br>(nom)   |
|             |                   |                           | Dry weight                    |                                    |
|             |                   |                           | Growth rate:                  |                                    |
|             |                   |                           | 7d ErC10 <sup>\$</sup>        |                                    |
|             |                   |                           | 7d ErC20 <sup>\$</sup>        | -                                  |
|             |                   |                           | 7d ErC50 <sup>\$</sup>        | -                                  |
|             |                   |                           | 7d NOErC <sup>\$</sup>        | -                                  |
|             |                   |                           |                               | -                                  |
|             |                   |                           | Yield:                        |                                    |
|             |                   |                           | 7d EyC10                      |                                    |
|             |                   |                           |                               | 5.72 mg a.e./L                     |
|             |                   |                           | 7d EyC20                      | (nom)<br>10.3 mg a.e./L            |
|             |                   |                           | 7d EyC50                      | <sup>(nom)</sup><br>32.1 mg a.e./L |
|             |                   |                           | 7d NOEyC                      | (nom)<br>8.65 mg a.e./L<br>(nom)   |
|             |                   |                           | Phytotoxicity                 |                                    |
|             |                   |                           | NOEC                          | 8.65 mg a.e./L                     |
|             |                   | 144 (2000)                | Free de avante en             | (nom)                              |
| Lemna gibba | a.s.              | 14d (semi-<br>static)     | Fronds number<br>Growth rate: |                                    |
|             | (Glyphosate acid) | static)                   | 7d ErC10                      |                                    |
|             | uoru)             |                           | /u EIC10                      | 13.3 mg a.e./L                     |
|             |                   |                           | 7d ErC20                      | (nom)<br>18.7 mg a.e./L            |
|             |                   |                           | 7d ErC50                      | <sup>(nom)</sup><br>36.0 mg a.e./L |
|             |                   |                           | 7d NOErC                      | (nom)<br>12 mg a.e./L<br>(nom)     |
|             |                   |                           | Yield:                        |                                    |
|             |                   |                           | 7d EyC10                      |                                    |
|             |                   |                           |                               | 10.5 mg a.e./L                     |
|             |                   |                           | 7d EyC20                      | (nom)<br>14.2 mg a.e./L            |
|             |                   |                           | 7d EyC50                      | (nom)<br>24.0 mg a.e./L            |
|             |                   |                           | 7d NOEyC                      | (nom)<br>6 mg a.e./L<br>(nom)      |
|             |                   |                           | Phytotoxicity                 |                                    |

| Group                  | Test substance                    | Time-scale<br>(Test type) | End point                                                                       | Toxicity <sup>1</sup>                                                                                                       |
|------------------------|-----------------------------------|---------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                        |                                   |                           | NOEC                                                                            | 1.5 mg a.e./L                                                                                                               |
| Lemna gibba            | a.s.<br>(Glyphosate<br>technical) | 14d (semi-<br>static)     | Fronds number<br>Growth rate:<br>7d ErC10<br>7d ErC20<br>7d ErC50               | 20.8 mg a.e./L<br>(mm)<br>31.9 mg a.e./L<br>(mm)<br>>49.4 mg a.e./L<br>(mm)                                                 |
|                        |                                   |                           | 7d NOErC<br>Yield:<br>7d EyC10<br>7d EyC20<br>7d EyC50<br>7d NOEyC              | 16.6 mg a.e./L<br>(mm)<br>18.2 mg a.e./L<br>(mm)<br>20.3 mg a.e./L<br>(mm)<br>25.0 mg a.e./L<br>(mm)<br>16.6 mg a.e./L      |
| Spirodela polyrhiza    | a.s.<br>(Glyphosate)              | 7d (semi-<br>static)      | 7d ErC50                                                                        | (mm)<br>Provisional<br>endpoint:                                                                                            |
| Myriophyllum aquaticum | AMPA                              | 14 d (static)             | Shoot length<br>Growth rate<br>14d ErC10<br>14d ErC20<br>14d ErC50<br>14d NOErC | 12.817 mg a.e./L #<br>6.1 mg<br>AMPA/L (mm)<br>22.5 mg<br>AMPA/L (mm)<br>> 94.6 mg<br>AMPA/L (mm)<br>14.3 mg<br>AMPA/L (mm) |
|                        |                                   |                           | Yield<br>14d EyC10<br>14d EyC20<br>14d EyC50<br>14d NOEyC                       | 1.3 mg<br>AMPA/L $^{(mm)}$<br>5.8 mg<br>AMPA/L $_{(mm)}$<br>> 94.6 mg<br>AMPA/L $_{(mm)}$<br>5.43 mg<br>AMPA/L $_{(mm)}$    |

| Group | Test substance | Time-scale<br>(Test type) | End point          | Toxicity <sup>1</sup>                                   |
|-------|----------------|---------------------------|--------------------|---------------------------------------------------------|
|       |                |                           |                    |                                                         |
|       |                |                           | Shoot fresh weight |                                                         |
|       |                |                           | Growth rate        | 24.2 mg                                                 |
|       |                |                           | 14d ErC10          | AMPA/L (mm)<br>39 mg                                    |
|       |                |                           | 14d ErC20          | $\frac{\text{AMPA/L}_{(\text{mm})}}{> 94.6 \text{ mg}}$ |
|       |                |                           | 14d ErC50          | AMPA/L (mm)<br>14.3 mg                                  |
|       |                |                           | 14d NOErC          | AMPA/L (mm)                                             |
|       |                |                           | Yield              | 10.7                                                    |
|       |                |                           | 14d EyC10          | 19.7 mg<br>AMPA/L <sup>(mm)</sup>                       |
|       |                |                           | 14d EyC20          | 30.6 mg<br>AMPA/L <sup>(mm)</sup><br>70.8 mg            |
|       |                |                           | 14d EyC50          | 70.8 mg<br>AMPA/L <sup>(mm)</sup><br>14.3 mg            |
|       |                |                           | 14d NOEyC          | AMPA/L <sup>(mm)</sup>                                  |
|       |                |                           | Shoot dry weight   |                                                         |
|       |                |                           | Growth rate        | 38.4 mg                                                 |
|       |                |                           | 14d ErC10          | $AMPA/L^{(mm)} = 47.6 mg$                               |
|       |                |                           | 14d ErC20          | AMPA/L <sup>(mm)</sup><br>72 mg                         |
|       |                |                           | 14d ErC50          | AMPA/L <sup>(mm)</sup><br>37.1 mg                       |
|       |                |                           | 14d NOErC          | AMPA/L (mm)                                             |
|       |                |                           | Yield              |                                                         |
|       |                |                           | 14d EyC10          | 33.9 mg<br>AMPA/L (mm)                                  |
|       |                |                           | 14d EyC20          | 42 mg<br>AMPA/L (mm)                                    |
|       |                |                           | 14d EyC50          | 63.2 mg<br>AMPA/L (mm)                                  |
|       |                |                           | 14d NOEyC          | 37.1 mg<br>AMPA/L (mm)                                  |
|       |                |                           | Root length        |                                                         |
|       |                |                           | Growth rate        | 17 mg                                                   |
|       |                |                           | 14d ErC10          | 17 mg<br>AMPA/L <sub>(mm)</sub><br>35.9 mg              |

| Group       | Test substance | Time-scale            | End point                                                                     | Toxicity <sup>1</sup>                                                                                                                                                          |
|-------------|----------------|-----------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                | (Test type)           |                                                                               |                                                                                                                                                                                |
|             |                |                       | 14d ErC20                                                                     | AMPA/L $(mm)$<br>> 94.6 mg                                                                                                                                                     |
|             |                |                       | 14d ErC50                                                                     | AMPA/L (mm)<br>14.3 mg                                                                                                                                                         |
|             |                |                       | 14d NOErC                                                                     | AMPA/L (mm)                                                                                                                                                                    |
|             |                |                       | Yield                                                                         |                                                                                                                                                                                |
|             |                |                       | 14d EyC10                                                                     | 5.1 mg<br>AMPA/L (mm)                                                                                                                                                          |
|             |                |                       | 14d EyC20                                                                     | 9.5 mg<br>AMPA/L (mm)                                                                                                                                                          |
|             |                |                       | 14d EyC50                                                                     | 31.1 mg<br>AMPA/L (mm)                                                                                                                                                         |
|             |                |                       | 14d NOEyC                                                                     | 2.23 mg<br>AMPA/L (mm)                                                                                                                                                         |
| Lemna gibba | НМРА           | 7 d (semi-<br>static) | Frond<br>number/biomass/dry<br>weight                                         |                                                                                                                                                                                |
|             |                |                       | Growth rate                                                                   |                                                                                                                                                                                |
|             |                |                       | 7d ErC10                                                                      | > 123  mg<br>HMPA/L (nom)                                                                                                                                                      |
|             |                |                       | 7d ErC20                                                                      | > 123 mg                                                                                                                                                                       |
|             |                |                       | 7d ErC50                                                                      | > 123 mg                                                                                                                                                                       |
|             |                |                       | 7d NOErC                                                                      | HMPA/L (nom)<br>123 mg<br>HMPA/L (nom)                                                                                                                                         |
|             |                |                       | Yield                                                                         | > 123 mg                                                                                                                                                                       |
|             |                |                       | 7d EyC10                                                                      | HMPA/L (nom)                                                                                                                                                                   |
|             |                |                       | 7d EyC20                                                                      | HMPA/L (nom)                                                                                                                                                                   |
|             |                |                       | 7d EyC50                                                                      | > 123 mg<br>HMPA/L (nom)                                                                                                                                                       |
|             |                |                       | 7d NOEyC                                                                      | 123 mg<br>HMPA/L <sub>(nom)</sub>                                                                                                                                              |
|             |                |                       | 7d ErC20<br>7d ErC50<br>7d NOErC<br>Yield<br>7d EyC10<br>7d EyC20<br>7d EyC50 | HMPA/L (no<br>> 123 mg<br>HMPA/L (no<br>> 123 mg<br>HMPA/L (no<br>123 mg<br>HMPA/L (no<br>> 123 mg<br>HMPA/L (no<br>> 123 mg<br>HMPA/L (no<br>> 123 mg<br>HMPA/L (no<br>123 mg |

| Group                  | Test substance | Time-scale<br>(Test type) | End point                                                                                                                          | Toxicity <sup>1</sup>                                                          |
|------------------------|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Lemna gibba            | MON 52276      | 7 d (semi-<br>static)     | Fronds number<br>Growth rate:<br>7d ErC50                                                                                          | >150 mg<br>prep./L <sub>(nom)</sub><br>(>46.35 mg<br>a.e/L <sub>(nom)</sub>    |
|                        |                |                           | 7d NOErC                                                                                                                           | 19.1 mg<br>prep./L <sub>(nom)</sub><br>(5.90 mg<br>a.e/L <sub>(nom)</sub> )    |
|                        |                |                           | Yield:<br>7d EyC50                                                                                                                 | 66.58 mg<br>prep./L <sub>(nom)</sub><br>(20.57 mg<br>a.e/L <sub>(nom)</sub> )  |
|                        |                |                           | 7d NOEyC                                                                                                                           | 19.1 mg<br>prep./L <sub>(nom)</sub><br>(5.90 mg<br>a.e/L <sub>(nom)</sub> )    |
|                        |                |                           | Dry weight<br>Growth rate:<br>7d ErC10 <sup>\$</sup><br>7d ErC20 <sup>\$</sup><br>7d ErC50 <sup>\$</sup><br>7d NOErC <sup>\$</sup> | -<br>-<br>-                                                                    |
|                        |                |                           | Yield:<br>7d EyC50                                                                                                                 | 118.16 mg<br>prep./L <sub>(nom)</sub><br>(36.51 mg<br>a.e/L <sub>(nom)</sub> ) |
|                        |                |                           | 7d NOEyC                                                                                                                           | 19.1 mg<br>prep./L <sub>(nom)</sub><br>(5.90 mg<br>a.e/L <sub>(nom)</sub> )    |
| Myriophyllum aquaticum | MON 52276      | 14d (static)              | Shoot length<br>Growth rate                                                                                                        |                                                                                |

| Group | Test substance | Time-scale<br>(Test type) | End point          | Toxicity <sup>1</sup>                                             |
|-------|----------------|---------------------------|--------------------|-------------------------------------------------------------------|
|       |                | (rest type)               | 14d ErC10          | 2 16                                                              |
|       |                |                           | 140 ErC10          | 3.46 mg<br>prep./L (1.07<br>mg a.e./L) (mm)                       |
|       |                |                           | 14d ErC20          | 12.42 mg<br>prep./L (3.81<br>mg a.e./L) <sub>(mm)</sub>           |
|       |                |                           | 14d ErC50          | 139.5 mg<br>prep./L (42.79<br>mg a.e./L) <sub>(mm)</sub>          |
|       |                |                           | 14d NOErC          | 3.59 mg<br>prep./L (1.1<br>mg a.e./L) (mm)                        |
|       |                |                           | Yield              |                                                                   |
|       |                |                           | 14d EyC10          | 1.39 mg<br>prep./L (0.43<br>mg a.e./L) <sub>(mm)</sub>            |
|       |                |                           | 14d EyC20          | 4.60 mg<br>prep./L (1.41)<br>mg a.e./L) <sub>(mm)</sub>           |
|       |                |                           | 14d EyC50          | 43.81 mg<br>prep./L (13.44)<br>mg a.e./L) <sub>(mm)</sub>         |
|       |                |                           | 14d NOEyC          | 3.59 mg<br>prep./L (1.1<br>mg a.e./L) <sub>(mm</sub>              |
|       |                |                           | Shoot fresh weight |                                                                   |
|       |                |                           | Growth rate        |                                                                   |
|       |                |                           | 14d ErC10          | 0.518 mg<br>prep./L (0.16<br>mg a.e./L) <sub>(mm)</sub>           |
|       |                |                           | 14d ErC20          | 2.15 mg<br>prep./L (0.66<br>mg a.e./L) <sub>(mm)</sub>            |
|       |                |                           | 14d ErC50          | 33.67 mg<br>prep./L (10.33                                        |
|       |                |                           | 14d NOErC          | mg a.e./L) (mm)<br>< 0.98 mg<br>prep./L (< 0.3<br>mg a.e./L) (mm) |
|       |                |                           | Yield              |                                                                   |
|       |                |                           | 14d EyC10          | 0.36 mg<br>prep./L (0.11<br>mg a.e./L) (mm)                       |
|       |                |                           | 14d EyC20          | 1.27 mg                                                           |

| Group | Test substance | Time-scale  | End point        | Toxicity <sup>1</sup>             |
|-------|----------------|-------------|------------------|-----------------------------------|
|       |                | (Test type) |                  |                                   |
|       |                |             |                  | prep./L (0.39                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 14d EyC50        | 14.47 mg                          |
|       |                |             |                  | prep./L (4.44                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 14d NOEyC        | < 0.98 mg                         |
|       |                |             |                  | prep./L (< 0.3                    |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | Shoot dry weight |                                   |
|       |                |             | Growth rate      |                                   |
|       |                |             | 14d ErC10        | 1.42 mg                           |
|       |                |             | 140 LICIO        | prep./L (0.44                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 14d ErC20        | 10.52 mg                          |
|       |                |             |                  | prep./L (3.23                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 14d ErC50        | 467.1 mg                          |
|       |                |             |                  | prep./L (143.3                    |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | Yield            |                                   |
|       |                |             | 14d EyC10        |                                   |
|       |                |             | 5                | < 0.98  mg                        |
|       |                |             |                  | prep./L (< 0.3<br>mg a.e./L) (mm) |
|       |                |             | 14d EyC50        | >473 mg                           |
|       |                |             |                  | prep./L (>145                     |
|       |                |             |                  | mg a.e./L) $(mm)$                 |
|       |                |             |                  | 8                                 |
|       |                |             | Root length      |                                   |
|       |                |             | Growth rate      |                                   |
|       |                |             | 14d ErC10        |                                   |
|       |                |             |                  |                                   |
|       |                |             |                  | 7.22 mg                           |
|       |                |             | 14d ErC20        | prep./L (2.23                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 1415 050         | 20.63 mg                          |
|       |                |             | 14d ErC50        | prep./L (6.33                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | 14d NOErC        | 151.6 mg                          |
|       |                |             |                  | prep./L (46.5                     |
|       |                |             |                  | mg a.e./L) (mm)                   |
|       |                |             | x7: 11           | 3.59 mg                           |
|       |                |             | Yield            | prep./L 1.1 mg                    |
|       |                |             | 14d EyC10        | a.e./L) (mm)                      |
|       |                |             | 14d EyC20        |                                   |
|       |                |             |                  | 2 40                              |
|       |                |             |                  | 3.40 mg                           |

| Group | Test substance | Time-scale<br>(Test type) | End point | Toxicity <sup>1</sup>                                                                                             |
|-------|----------------|---------------------------|-----------|-------------------------------------------------------------------------------------------------------------------|
|       |                |                           | 14d EyC50 | prep./L (1.05<br>mg a.e./L) (mm)                                                                                  |
|       |                |                           | 14d NOEyC | 6.16 mg<br>prep./L (1.89<br>mg a.e./L) <sub>(mm)</sub><br>19.04 mg<br>prep./L (5.84<br>mg a.e./L) <sub>(mm)</sub> |
|       |                |                           |           | 3.59 mg<br>prep./L (1.1<br>mg a.e./L) <sub>(mm)</sub>                                                             |

#### Further testing on aquatic organisms

[To report a short summary of mesocosms and SSD assessments and to include the associated AF for the representative use and explain the reason (briefly)]

#### Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

A Fish Short Term reproduction Assay is available. There is no indication of EAS-activity observed in the test.

<sup>1</sup> (nom) nominal concentration; (mm) arithmetic mean measured concentration; (gmm) geometric mean measured concentration; (im) initial measured concentration; prep.: preparation; a.e.: acid equivalent

# Literature data considered as supplementary information for weight of evidence.

\$ Data gap

Regarding supportive studies for which no analytical verification is indicated, they have been considered as supportive given either that analytical verifications is not a validity criteria in guidelines (only recommandations) or that there is evidence from other related studies that the exposure can be considered satisfactory.

1) Supportive data: No analytical test verifications, exposure cannot be confirmed. Other small deviations (pH, fish lengths)

2) Supportive data: no analytics, pH issue

3) Supportive data: Results can not be considered for acute risk assessment as fish are bigger than recommended.

pH issue (endpoint set at highest concentration without effects)

4) Supportive data: No analytical test verifications, exposure cannot be confirmed

5) Supportive data: Insufficient analytical test verifications, exposure cannot be confirmed

6) Supportive data: test species not listed in the recommended species of OECD 203. Sensitivity of individuals of that size size (5.90 cm) is not known

7) Supportive data: Analytical method validation not available. Indirect quantification of glyphosate. Some parameters show high variability. Statistics not reliable.

8) Supportive data: No analytical verification of test concentrations

9) Supportive data: Analytical separate report (ML-90-403/EHL-90187-Daphnia) with no results reported on analytics. No validation data for analytical method was available.

10) Supportive data: No analytical verification in sediment. No report for analytical method was available.

11) Supportive data: No analytical verification of test concentrations throughout the test.

### **Bioconcentration in fish (Annex Part A, point 8.2.2.3)**

|                                                                                                    | Active<br>substance                     | Metabolite<br>1 | Metabolite 2 | Metabolite 3 |
|----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|--------------|--------------|
| logP <sub>O/W</sub>                                                                                |                                         |                 |              |              |
| Steady-state bioconcentration factor (BCF)<br>(total wet weight/normalised to 5% lipid<br>content) | No BCF<br>validated <sup>*,</sup><br>** |                 |              |              |
| Uptake/depuration kinetics BCF<br>(total wet weight/normalised to 5% lipid<br>content)             |                                         |                 |              |              |
| Annex VI Trigger for the bioconcentration factor                                                   |                                         |                 |              |              |
| Clearance time (days) (CT <sub>50</sub> )                                                          |                                         |                 |              |              |
| (CT <sub>90</sub> )                                                                                |                                         |                 |              |              |
| Level and nature of residues (%) in<br>organisms after the 14 day depuration phase                 |                                         |                 |              |              |
| Higher tier study                                                                                  |                                         |                 |              |              |
| *1 1 ( 1140 °C 1                                                                                   |                                         |                 |              |              |

\* based on total <sup>14</sup>C or on specific compounds
\*\* study provide however evidence that the potential for bioaccumulation of glyphosate is low.

### Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

Provisional PEC/RAC: data gap on PECsw/sed.

|              |                          | fish acute             | fish chronic         | Aquatic<br>invertebrates | Aquatic<br>invertebrates<br>prolonged | Algae                | Higher plant           |
|--------------|--------------------------|------------------------|----------------------|--------------------------|---------------------------------------|----------------------|------------------------|
|              |                          | Lepomis<br>macrochirus | Brachydanio<br>rerio | Crassostrea gigas        | Daphnia magna                         | Skeletonema costatum | Myriophyllum aquaticum |
|              |                          | LC <sub>50</sub>       | NOEC                 | $EC_{50}$                | NOEC                                  | $ErC_{50}$           | $ErC_{50}$             |
|              |                          | 32000 µg/L             | 1000 µg/L            | 40000 µg/L               | 12500 µg/L                            | 13500 µg/L           | 10330 µg/L             |
| AF           |                          | 100                    | 10                   | 100                      | 10                                    | 10                   | 10                     |
| RAC (µg/L)   |                          | 320                    | 100                  | 400                      | 1250                                  | 1350                 | 1033                   |
| Scenario     | PEC global max<br>(µg L) |                        |                      |                          |                                       |                      |                        |
| FOCUS Step 1 |                          |                        |                      |                          |                                       |                      |                        |
|              | 167.72                   | 0.52                   | 1.68                 | 0.42                     | 0.13                                  | 0.12                 | 0.16                   |
| FOCUS Step 2 |                          |                        |                      |                          |                                       |                      |                        |
| North Europe | 69.95                    | 0.22                   | 0.70                 | 0.17                     | 0.06                                  | 0.05                 | 0.07                   |
| South Europe | 56.86                    | 0.18                   | 0.57                 | 0.14                     | 0.05                                  | 0.04                 | 0.06                   |

### FOCUSsw step 1-2 – PEC/RACs for glyphosate – field uses at 2 x 1440 g a.s./ha

|              |                          | fish acute             | fish chronic        | Aquatic<br>invertebrates | Aquatic<br>invertebrates<br>prolonged | Algae                              | Higher plant              |
|--------------|--------------------------|------------------------|---------------------|--------------------------|---------------------------------------|------------------------------------|---------------------------|
|              |                          | Oncorhynchus<br>mykiss | Pimephales promelas | Daphnia magna            | Daphnia magna                         | Pseudokirchneriella<br>subcapitata | Myriophyllum<br>aquaticum |
|              |                          | $LC_{50}$              | NOEC                | $EC_{50}$                | NOEC                                  | $ErC_{50}$                         | $ErC_{50}$                |
|              |                          | 100000 µg/L            | 12000 µg/L          | 100000 µg/L              | 15000 µg/L                            | 191000 µg/L                        | 72000 μg/L                |
| AF           |                          | 100                    | 10                  | 100                      | 10                                    | 10                                 | 10                        |
| RAC (µg/L)   |                          | 1000                   | 1200                | 1000                     | 1500                                  | 19100                              | 7200                      |
| Scenario     | PEC global max<br>(µg L) |                        |                     |                          |                                       |                                    |                           |
| FOCUS Step 1 |                          |                        |                     |                          |                                       |                                    |                           |
|              | 111.02                   | 0.11                   | 0.09                | 0.11                     | 0.07                                  | 0.01                               | 0.02                      |
| FOCUS Step 2 |                          |                        |                     |                          |                                       |                                    |                           |
| North Europe | 52.47                    | 0.05                   | 0.04                | 0.05                     | 0.03                                  | 0.003                              | 0.01                      |

#### FOCUSsw step 1-2 - TERs for AMPA - field uses at 2 x 1440 g a.s./ha

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold** 

### FOCUSsw step 1-2 - PEC/RACs for HMPA - field uses at 2 x 1440 g a.s./ha

|              |                          | Aquatic invertebrates | Algae                           | Higher plant         |
|--------------|--------------------------|-----------------------|---------------------------------|----------------------|
|              |                          | Daphnia magna         | Pseudokirchneriella subcapitata | Lemna gibba          |
|              |                          | $EC_{50}$             | $ErC_{50}$                      | $EC_{50}$            |
|              |                          | $> 100000  \mu g/L$   | $> 120000 \ \mu g/L$            | $> 123000 \ \mu g/L$ |
|              |                          | 100                   | 10                              | 10                   |
|              |                          | > 1000                | > 12000                         | > 12300              |
| Scenario     | PEC global max<br>(µg L) |                       |                                 |                      |
| FOCUS Step 1 |                          |                       |                                 |                      |
|              | 58.06                    | 0.06                  | 0.005                           | 0.005                |
| FOCUS Step 2 |                          |                       |                                 |                      |
| North Europe | 52.47                    | 0.05                  | 0.004                           | 0.004                |

#### PEC/RACs for glyphosate - railways at 1 x 3600 g a.s./ha

|               |                          | fish acute             | fish chronic      | Aquatic<br>invertebrates | Aquatic<br>invertebrates<br>prolonged | Algae                | Higher plant           |
|---------------|--------------------------|------------------------|-------------------|--------------------------|---------------------------------------|----------------------|------------------------|
|               |                          | Lepomis<br>macrochirus | Brachydanio rerio | Crassostrea gigas        | Daphnia magna                         | Skeletonema costatum | Myriophyllum aquaticum |
|               |                          | $LC_{50}$              | NOEC              | EC <sub>50</sub>         | NOEC                                  | $ErC_{50}$           | $\mathrm{ErC}_{50}$    |
|               |                          | 32000 µg/L             | 1000 µg/L         | 40000 µg/L               | 12500 µg/L                            | 13500 µg/L           | 10330 µg/L             |
| AF            |                          | 100                    | 10                | 100                      | 10                                    | 10                   | 10                     |
| RAC (µg/L)    |                          | 320                    | 100               | 400                      | 1250                                  | 1350                 | 1033                   |
| Scenario      | PEC global max<br>(µg L) |                        |                   |                          |                                       |                      |                        |
| Railway ditch | 9.458                    | 0.03                   | 0.09              | 0.02                     | 0.01                                  | 0.01                 | 0.01                   |

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold** 

### PEC/RACs for AMPA - railways at 1 x 3600 g a.s./ha

|               |                          | fish acute             | fish chronic           | Aquatic<br>invertebrates | Aquatic<br>invertebrates<br>prolonged | Algae                              | Higher plant              |
|---------------|--------------------------|------------------------|------------------------|--------------------------|---------------------------------------|------------------------------------|---------------------------|
|               |                          | Oncorhynchus<br>mykiss | Pimephales<br>promelas | Daphnia magna            | Daphnia magna                         | Pseudokirchneriella<br>subcapitata | Myriophyllum<br>aquaticum |
|               |                          | LC <sub>50</sub>       | NOEC                   | $EC_{50}$                | NOEC                                  | $\mathrm{ErC}_{50}$                | $ErC_{50}$                |
|               |                          | 100000 µg/L            | 12000 µg/L             | 100000 µg/L              | 15000 µg/L                            | 191000 μg/L                        | 72000 µg/L                |
| AF            |                          | 100                    | 10                     | 100                      | 10                                    | 10                                 | 10                        |
| RAC (µg/L)    |                          | 1000                   | 1200                   | 1000                     | 1500                                  | 19100                              | 7200                      |
| Scenario      | PEC global max<br>(µg L) |                        |                        |                          |                                       |                                    |                           |
| Railway ditch | 6.210                    | 0.01                   | 0.01                   | 0.006                    | 0.004                                 | 0.0003                             | 0.001                     |

|--|

| I LC/MICS IOI | IIIIII I Iuliways        | at 1 A 5000 g a.s./11a |                                 |                      |
|---------------|--------------------------|------------------------|---------------------------------|----------------------|
|               |                          | Aquatic invertebrates  | Algae                           | Higher plant         |
|               |                          | Daphnia magna          | Pseudokirchneriella subcapitata | Lemna gibba          |
|               |                          | EC <sub>50</sub>       | $ErC_{50}$                      | EC <sub>50</sub>     |
|               |                          | $> 100000  \mu g/L$    | > 120000 µg/L                   | $> 123000 \ \mu g/L$ |
| AF            |                          | 100                    | 10                              | 10                   |
| RAC (µg/L)    |                          | > 1000                 | > 12000                         | > 12300              |
| Scenario      | PEC global max<br>(µg L) |                        |                                 |                      |
| Railway ditch | 0.627                    | > 0.001                | > 0.0001                        | > 0.0001             |

# Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)\*

\* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

| Species           | Test substance | Time scale/type of endpoint | End point                               | toxicity                            |
|-------------------|----------------|-----------------------------|-----------------------------------------|-------------------------------------|
| Apis mellifera L. | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >104 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >182 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >40 µg/bee                          |
| Apis mellifera L. | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >200 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | 116.67 µg/bee                       |
| Apis mellifera L. | MON 52276      | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >77 µg a.s./bee                     |
| Bombus terrestris | a.s.,          | Acute                       | Oral toxicity<br>(LD <sub>50</sub> )    | >412 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >100 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >61.3 µg/bee (IPA salt equivalent)* |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >103 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >20 µg/bee                          |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >200 µg/bee                         |
| Apis mellifera L. | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >100 µg/bee                         |
| Bombus terrestris | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >461 µg/bee                         |
| Osmia bicornis    | a.s.,          | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >461 µg/bee                         |
| Apis mellifera L. | MON 52276      | Acute                       | Contact toxicity<br>(LD <sub>50</sub> ) | >100 µg a.s./bee                    |
| Apis mellifera L. | a.s.,          | Adult Chronic               | 10 d-LDD50<br>10 d-NOEDD                | >179 µg/bee/day<br>179 µg/bee/day   |
| Apis mellifera L. | a.s.,          | Bee brood<br>development    | 22 d-ED10                               | 75.6<br>μg/larva/developmental      |

|                |       |                                        | 22 d-NOED | period                                        |
|----------------|-------|----------------------------------------|-----------|-----------------------------------------------|
|                |       |                                        |           | 80 μg/larva/<br>developmental period          |
| Apis mellifera | a.s., | Bee brood feeding<br>test. Field study | NOAEL     | 301 mg/L (nominal),<br>266 mg/kg, (measured). |

\* acid equivalent purity not provided

Potential for accumulative toxicity: yes/no

Semi-field test (Cage and tunnel test)

### **2011** :

Residues in honeybee colony -Phacelia semi-field application at 8 L product/ha (2.88 g a.e./ha) during flowering and in the presence of foraging bees.

Total daily intake of glyphosate residues (via nectar + pollen) of:

- 269.3 mg a.e. (based on day 1 maximum mean residues),

- 141.8 mg a.e. (based on mean residues over days 1-3).

Field tests

-

### Risk assessment for – All representative uses at 1800 g a.s./ha x 1

| Species           | Test substance | Risk quotient             | HQ/ETR | Trigger |
|-------------------|----------------|---------------------------|--------|---------|
| Apis mellifera L. | a.s.           | HQcontact                 | < 18   | 50      |
| Apis mellifera L. | a.s.           | HQoral                    | < 23.4 | 50      |
| Apis mellifera L. | a.s.           | ETRacute<br>adult oral    | < 18   | 42      |
| Apis mellifera L. | a.s.           | ETRacute<br>adult contact | 0.18   | < 0.2   |
| Apis mellifera L. | a.s.           | ETRchronic adult oral     | <0.076 | < 0.03  |
| Apis mellifera L. | a.s.           | ETRlarvae*                | 0.1    | < 0.2   |
| Bombus terrestris | a.s.           | HQcontact                 | <3.9   | 7       |
| Bombus terrestris | a.s.           | ETRoral                   | <0.05  | 0.036   |
| Osmia bicornis    | a.s.           | HQcontact                 | <3.9   | 8       |

\*considering ED<sub>10</sub> of 75.6 µg/larva/developmental period

### First Tier risk assessment for adult chronic oral exposure

| crops and vines at 1440 g a.c./na        |                    |                                     |                |                           |        |        |         |  |
|------------------------------------------|--------------------|-------------------------------------|----------------|---------------------------|--------|--------|---------|--|
| Intended use                             |                    | Orchard crops, vines (Uses: 4a, 5a) |                |                           |        |        |         |  |
| Application method                       |                    | downward spraying                   |                |                           |        |        |         |  |
| Crop Catego                              | ory                | under crop application <sup>1</sup> |                |                           |        |        |         |  |
| Active subst                             | ance               | Glyphosate                          |                |                           |        |        |         |  |
| Use pattern                              |                    | 1-2 x 1440 g a.e./ha <sup>2</sup>   |                |                           |        |        |         |  |
| Test design                              | Endpoint<br>(lab.) | Scenario                            | BBCH           | $\mathbf{E}_{\mathbf{f}}$ | SV     | ETR    | Trigger |  |
|                                          |                    | Weeds                               | weed <10       | 1                         | 0.27   | < 0.01 |         |  |
|                                          |                    |                                     | weed ≥10       | 1                         | 2.9    | < 0.02 |         |  |
|                                          |                    | field margin                        | weed <10       | 0.0092                    | 2.9    | < 0.01 |         |  |
| Adult                                    | $LDD_{50} > 179.9$ |                                     | weed $\geq 10$ | 0.0092                    | 2.9    | < 0.01 |         |  |
| chronic oral<br>toxicity µg a.e./bee/day | 1.                 | weed <10                            | 0.0033         | 5.8                       | < 0.01 | 0.03   |         |  |
|                                          |                    | adjacent crop                       | weed ≥10       | 0.0033                    | 5.8    | < 0.01 | -       |  |
|                                          |                    | next crop                           | weed <10       | 1                         | 0.54   | < 0.01 |         |  |
|                                          |                    |                                     | weed ≥10       | 1                         | 0.54   | < 0.01 |         |  |

| First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 in orchard |
|---------------------------------------------------------------------------------------------------------|
| _crops and vines at 1440 g a.e./ha                                                                      |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation

| First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 in orchard |
|---------------------------------------------------------------------------------------------------------|
| crops and vines at 1080 g a.e./ha                                                                       |

| Intended use             | 2                  | Orchard crops, vines (Us            | es: 4a, 4b, 5a, | , 5b)            |      |         |         |  |  |
|--------------------------|--------------------|-------------------------------------|-----------------|------------------|------|---------|---------|--|--|
| Application              | method             | downward spraying                   |                 |                  |      |         |         |  |  |
| Crop catego              | ry                 | under crop application <sup>1</sup> |                 |                  |      |         |         |  |  |
| Active substa            | ance               | Glyphosate                          |                 |                  |      |         |         |  |  |
| Use pattern              |                    | 1-3 x 1080 g a.e./ha                |                 |                  |      |         |         |  |  |
| Test design              | Endpoint<br>(lab.) | Scenario                            | BBCH            | $\mathbf{E_{f}}$ | SV   | ETR     | Trigger |  |  |
|                          |                    | Weeds                               | weed <10        | 1                | 0.27 | < 0.001 | 0.03    |  |  |
|                          |                    |                                     | weed ≥10        | 1                | 2.9  | < 0.013 |         |  |  |
|                          |                    |                                     | weed <10        | 0.0092           | 2.9  | < 0.001 |         |  |  |
| Adult                    | $LDD_{50} > 179.9$ | field margin                        | weed ≥10        | 0.0092           | 2.9  | < 0.001 |         |  |  |
| chronic oral<br>toxicity | µg a.e./bee/day    | a dia contenuer                     | weed <10        | 0.0033           | 5.8  | < 0.001 |         |  |  |
|                          |                    | adjacent crop                       | weed ≥10        | 0.0033           | 5.8  | < 0.001 |         |  |  |
|                          |                    |                                     | weed <10        | 1                | 0.54 | < 0.002 |         |  |  |
|                          |                    | next crop                           | weed ≥10        | 1                | 0.54 | < 0.002 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1080 g a.e./ha considered for risk calculation

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 in orchard crops and vines at 720 g a.e./ha

| Intended use             | 2                  | Orchard crops, vines (Us            | es: 4b, 4c, 5b | , 5c)  |      |         |         |  |  |
|--------------------------|--------------------|-------------------------------------|----------------|--------|------|---------|---------|--|--|
| Application              | method             | downward spraying                   |                |        |      |         |         |  |  |
| Crop Catego              | ory                | under crop application <sup>1</sup> |                |        |      |         |         |  |  |
| Active substa            | ance               | Glyphosate                          |                |        |      |         |         |  |  |
| Use pattern              |                    | 1-3 x 720 g a.e./ha <sup>2</sup>    |                |        |      |         |         |  |  |
| Test design              | Endpoint<br>(lab.) | Scenario                            | BBCH           | Ef     | SV   | ETR     | Trigger |  |  |
|                          |                    | Weeds                               | weed <10       | 1      | 0.27 | < 0.001 | 0.03    |  |  |
|                          |                    |                                     | weed $\geq 10$ | 1      | 2.9  | < 0.008 |         |  |  |
|                          |                    | Gald mania                          | weed <10       | 0.0092 | 2.9  | < 0.001 |         |  |  |
| Adult                    | $LDD_{50} > 179.9$ | field margin                        | weed ≥10       | 0.0092 | 2.9  | < 0.001 |         |  |  |
| chronic oral<br>toxicity | µg a.e./bee/day    | a dia ang ang ang                   | weed <10       | 0.0033 | 5.8  | < 0.001 |         |  |  |
|                          |                    | adjacent crop                       | weed ≥10       | 0.0033 | 5.8  | < 0.001 |         |  |  |
|                          |                    | nout onon                           | weed <10       | 1      | 0.54 | < 0.002 |         |  |  |
|                          |                    | next crop                           | weed $\geq 10$ | 1      | 0.54 | < 0.002 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 720 g a.e./ha considered for risk calculation

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 – railroad tracks at 1800 g a.e./ha

| Intended use             | 0                  | Railroad tracks (Uses: 7a           | ı, 7b)   |                           |      |         |         |  |  |
|--------------------------|--------------------|-------------------------------------|----------|---------------------------|------|---------|---------|--|--|
| Application              |                    | downward spraying                   |          |                           |      |         |         |  |  |
| Crop Catego              | ory                | under crop application <sup>1</sup> |          |                           |      |         |         |  |  |
| Active subst             | ance               | Glyphosate                          |          |                           |      |         |         |  |  |
| Use pattern              |                    | 1-2 x 1800 g a.e./ha <sup>2</sup>   |          |                           |      |         |         |  |  |
| Test design              | Endpoint<br>(lab.) | Scenario                            | BBCH     | $\mathbf{E}_{\mathbf{f}}$ | SV   | ETR     | Trigger |  |  |
|                          |                    | Weeds                               | weed <10 | 1                         | 0.27 | < 0.002 | 0.03    |  |  |
|                          |                    |                                     | weed ≥10 | 1                         | 2.9  | < 0.021 |         |  |  |
|                          |                    |                                     | weed <10 | 0.0092                    | 2.9  | < 0.001 |         |  |  |
| Adult                    | $LDD_{50} > 179.9$ | field margin                        | weed ≥10 | 0.0092                    | 2.9  | < 0.001 |         |  |  |
| chronic oral<br>toxicity | µg a.e./bee/day    | . 1'                                | weed <10 | 0.0033                    | 5.8  | < 0.001 |         |  |  |
| 2                        |                    | adjacent crop                       | weed ≥10 | 0.0033                    | 5.8  | < 0.001 |         |  |  |
|                          |                    |                                     | weed <10 | 1                         | 0.54 | < 0.004 |         |  |  |
|                          |                    | next crop                           | weed ≥10 | 1                         | 0.54 | < 0.004 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> As no definite scenario for railroad tracks is provided by the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, the under crop application scenario was considered to address uses on railroad tracks

<sup>2</sup> Max. single application rate of 1800 g a.e./ha considered for risk calculation

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 – invasive plant species in agricultural and non-agricultural areas at 1800 g a.e./ha

| Intended use             | 2                  | invasive plant species in           | invasive plant species in agricultural and non-agricultural areas (Uses: 8, 9) |        |      |         |         |  |  |
|--------------------------|--------------------|-------------------------------------|--------------------------------------------------------------------------------|--------|------|---------|---------|--|--|
| Application              | method             | downward spraying                   |                                                                                |        |      |         |         |  |  |
| Crop Catego              | ory                | under crop application <sup>1</sup> |                                                                                |        |      |         |         |  |  |
| Active subst             | ance               | Glyphosate                          |                                                                                |        |      |         |         |  |  |
| Use pattern              |                    | 1 x 1800 g a.e./ha                  |                                                                                |        |      |         |         |  |  |
| Test design              | Endpoint<br>(lab.) | Scenario                            | BBCH                                                                           | Ef     | SV   | ETR     | Trigger |  |  |
|                          |                    | Weeds                               | weed <10                                                                       | 1      | 0.27 | < 0.002 | 0.03    |  |  |
|                          |                    |                                     | weed >10                                                                       | 1      | 2.9  | < 0.021 |         |  |  |
|                          |                    |                                     | weed <10                                                                       | 0.0092 | 2.9  | < 0.001 |         |  |  |
| Adult                    | $LDD_{50} > 179.9$ | field margin                        | weed >10                                                                       | 0.0092 | 2.9  | < 0.001 |         |  |  |
| chronic oral<br>toxicity | µg a.e./bee/day    | a dia continuor                     | weed <10                                                                       | 0.0033 | 5.8  | < 0.001 |         |  |  |
|                          |                    | adjacent crop                       | weed >10                                                                       | 0.0033 | 5.8  | < 0.001 |         |  |  |
|                          |                    | nout onon                           | weed <10                                                                       | 1      | 0.54 | < 0.004 |         |  |  |
|                          |                    | next crop                           | weed >10                                                                       | 1      | 0.54 | < 0.004 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> As no definite scenario for invasive weeds is provided by the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, under crop application: giant hogweed (*Heracleum* spp.) and Japanese knotweed (*Reynoutria japonica*)

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 – pre-sowing, pre-planting and post-harvest uses at 1440 g a.e./ha

| Intended use     | •                                     | Root & tuber vegetables, Bulb vegetables, Fruiting vegetables, Brassica,<br>Leafy vegetables, Stem vegetables, Sugar beet (Uses: 1a, 2a) |                 |              |                        |         |         |  |
|------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------|---------|---------|--|
| Application      | method                                | downward spraying                                                                                                                        |                 |              |                        |         |         |  |
| Crop category    |                                       | bare soil application – cr                                                                                                               | op attractive f | for pollen a | nd nectar <sup>1</sup> |         |         |  |
| Active substance |                                       | Glyphosate                                                                                                                               |                 |              |                        |         |         |  |
| Use pattern      |                                       | 1-2 x 1440 g a.e./ha <sup>2</sup>                                                                                                        |                 |              |                        |         |         |  |
| Test design      | Endpoint<br>(lab.)                    | Scenario                                                                                                                                 | BBCH            | Ef           | SV                     | ETR     | Trigger |  |
|                  |                                       | treated crop                                                                                                                             | <10             | 1            | 0.54                   | < 0.003 |         |  |
| Adult            |                                       | Weeds                                                                                                                                    | <10             | 1            | 0.27                   | < 0.002 |         |  |
| chronic oral     | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                                                                                                                             | <10             | 0.0092       | 2.9                    | < 0.001 | 0.03    |  |
| toxicity         |                                       | adjacent crop                                                                                                                            | <10             | 0.0033       | 5.8                    | < 0.001 |         |  |
|                  |                                       | next crop                                                                                                                                | <10             | 1            | 0.54                   | < 0.003 |         |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation

### First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - pre-sowing, pre-planting and post-harvest uses at 1080 g a.e./ha

| Intended use  |                                              | Root & tuber vegetables, Bulb vegetables, Fruiting vegetables, Brassica,<br>Leafy vegetables, Stem vegetables, Sugar beet, Legume vegetables<br>(Uses: 1b, 2a, 2b, 2c, 6a, 10a) |                       |            |                     |         |         |  |
|---------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---------------------|---------|---------|--|
| Application   | method                                       | downward spraying                                                                                                                                                               |                       |            |                     |         |         |  |
| Crop catego   | ry                                           | bare soil application –                                                                                                                                                         | crop attractive for j | pollen and | nectar <sup>1</sup> |         |         |  |
| Active substa | ance                                         | Glyphosate                                                                                                                                                                      |                       |            |                     |         |         |  |
| Use pattern   |                                              | 1-3 x 1080 g a.e./ha <sup>2</sup>                                                                                                                                               |                       |            |                     |         |         |  |
| Test design   | Endpoint<br>(lab.)                           | Scenario                                                                                                                                                                        | BBCH                  | Ef         | SV                  | ETR     | Trigger |  |
|               |                                              | treated crop                                                                                                                                                                    | <10                   | 1          | 0.54                | < 0.002 |         |  |
| Adult         | LDD <sub>50</sub> > 179.9<br>µg a.e./bee/day | Weeds                                                                                                                                                                           | <10                   | 1          | 0.27                | < 0.001 | ]       |  |
| chronic oral  |                                              | field margin                                                                                                                                                                    | <10                   | 0.0092     | 2.9                 | < 0.001 | 0.03    |  |
| toxicity      | μ5 α.ο./ θοο/α                               | adjacent crop                                                                                                                                                                   | <10                   | 0.0033     | 5.8                 | < 0.001 | ]       |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<10

1

0.54

< 0.002

<sup>2</sup> Max. single application rate of 1080 g a.e./ha considered for risk calculation

next crop

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - pre-sowing, pre-planting and post-harvest uses at 720 g a.e./ha

| Intended use  | 2                                     | Root & tuber vegetables, Bulb vegetables, Fruiting vegetables, Brassica,<br>Leafy vegetables, Stem vegetables, Sugar beet, Legume vegetables<br>(Uses: 1c, 2b, 6b, 10b, 10c) |                 |              |                         |         |         |
|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------------------|---------|---------|
| Application   | method                                | downward spraying                                                                                                                                                            |                 |              |                         |         |         |
| Crop category |                                       | bare soil application – cr                                                                                                                                                   | op attractive f | for pollen a | and nectar <sup>1</sup> |         |         |
| Active subst  | ance                                  | Glyphosate                                                                                                                                                                   |                 |              |                         |         |         |
| Use pattern   |                                       | 1-3 x 720 g a.e./ha <sup>2</sup>                                                                                                                                             |                 |              |                         |         |         |
| Test design   | Endpoint<br>(lab.)                    | Scenario                                                                                                                                                                     | BBCH            | Ef           | SV                      | ETR     | Trigger |
|               |                                       | treated crop                                                                                                                                                                 | <10             | 1            | 0.54                    | < 0.002 |         |
| Adult         |                                       | Weeds                                                                                                                                                                        | <10             | 1            | 0.27                    | < 0.001 |         |
| chronic oral  | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                                                                                                                                                                 | <10             | 0.0092       | 2.9                     | < 0.001 | 0.03    |
| toxicity      | μς α.ο., σοο, ααγ                     | adjacent crop                                                                                                                                                                | <10             | 0.0033       | 5.8                     | < 0.001 |         |
|               |                                       |                                                                                                                                                                              |                 |              |                         |         | 1       |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup>Crop category in the first tier oral assessment according to the EFSA GD on the Risk Assessment on Bees (2013)

<sup>2</sup> Max. single application rate of 720 g a.e./ha considered for risk calculation

# First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 – fruiting vegetables

| Intended use     | 2                                     | Fruiting vegetables, (Uses: 1, 2, 3, 6, 10)               |                      |                  |      |       |         |  |  |  |  |
|------------------|---------------------------------------|-----------------------------------------------------------|----------------------|------------------|------|-------|---------|--|--|--|--|
| Application      | method                                | downward spraying                                         |                      |                  |      |       |         |  |  |  |  |
| Crop catego      | ry                                    | fruiting vegetables 1, fruiting vegetables 2 <sup>1</sup> |                      |                  |      |       |         |  |  |  |  |
| Active substance |                                       | Glyphosate                                                | Glyphosate           |                  |      |       |         |  |  |  |  |
| Use pattern      |                                       | 1-2 x 1440 g a.e./ha <sup>2</sup>                         |                      |                  |      |       |         |  |  |  |  |
| Test design      | Endpoint<br>(lab.)                    | Scenario                                                  | BBCH                 | $\mathbf{E_{f}}$ | SV   | ETR   | Trigger |  |  |  |  |
| Fruiting veg     | etables 1                             |                                                           |                      | <u>.</u>         |      |       |         |  |  |  |  |
|                  |                                       |                                                           | < 10                 | 1                | 0.54 | 0.003 |         |  |  |  |  |
|                  |                                       | treated crop                                              | 10 - 49 <sup>3</sup> | 1                | 5.8  | 0.033 |         |  |  |  |  |
|                  |                                       |                                                           | $\geq 70$            | 1                | 0    | 0.000 |         |  |  |  |  |
|                  |                                       | Weeds                                                     | < 10                 | 1                | 2.9  | 0.017 | _       |  |  |  |  |
|                  |                                       |                                                           | 10 - 49 <sup>3</sup> | 1                | 2.9  | 0.017 |         |  |  |  |  |
| Adult            |                                       |                                                           | $\geq 70$            | 0.3              | 2.9  | 0.005 |         |  |  |  |  |
| chronic oral     | $LDD_{50} > 179.9$<br>µg a.e./bee/day |                                                           | < 10                 | 0.0092           | 2.9  | 0.000 | 0.03    |  |  |  |  |
| toxicity         | µg u.e., bee, uuy                     | field margin                                              | 10 - 49 <sup>3</sup> | 0.0092           | 2.9  | 0.000 |         |  |  |  |  |
|                  |                                       |                                                           | $\geq 70$            | 0.0092           | 2.9  | 0.000 |         |  |  |  |  |
|                  |                                       |                                                           | < 10                 | 0.0033           | 5.8  | 0.000 |         |  |  |  |  |
|                  |                                       | adjacent crop                                             | 10 - 49 <sup>3</sup> | 0.0033           | 5.8  | 0.000 | ]       |  |  |  |  |
|                  |                                       |                                                           | $\geq 70$            | 0.0033           | 5.8  | 0.000 | 1       |  |  |  |  |
|                  |                                       | next crop                                                 | < 10                 | 1                | 0.54 | 0.003 |         |  |  |  |  |

| Intended us  | 9                                     | Fruiting vegetables, (Use                                 | es 1 2 3 6           | 10)              |       |       |         |  |  |  |
|--------------|---------------------------------------|-----------------------------------------------------------|----------------------|------------------|-------|-------|---------|--|--|--|
| Application  |                                       | downward spraying                                         |                      | 10)              |       |       |         |  |  |  |
|              |                                       |                                                           |                      |                  |       |       |         |  |  |  |
| Crop catego  | ·                                     | fruiting vegetables 1, fruiting vegetables 2 <sup>1</sup> |                      |                  |       |       |         |  |  |  |
| Active subst | ance                                  | Glyphosate                                                |                      |                  |       |       |         |  |  |  |
| Use pattern  |                                       | 1-2 x 1440 g a.e./ha <sup>2</sup>                         |                      |                  |       |       |         |  |  |  |
| Test design  | Endpoint<br>(lab.)                    | Scenario                                                  | BBCH                 | $\mathbf{E_{f}}$ | SV    | ETR   | Trigger |  |  |  |
|              |                                       |                                                           | 10 - 49 <sup>3</sup> | 1                | 0.54  | 0.003 |         |  |  |  |
|              |                                       |                                                           | $\geq 70$            | 1                | 0.54  | 0.003 |         |  |  |  |
| Fruiting veg | etables 2                             |                                                           |                      |                  |       |       |         |  |  |  |
|              |                                       |                                                           | < 10                 | 1                | 0.012 | 0.000 |         |  |  |  |
|              |                                       | treated crop                                              | 10 - 49 <sup>3</sup> | 1                | 0.92  | 0.005 |         |  |  |  |
|              |                                       |                                                           | $\geq 70$            | 1                | 0     | 0.000 |         |  |  |  |
|              |                                       | Weeds                                                     | < 10                 | 1                | 2.9   | 0.017 |         |  |  |  |
|              |                                       |                                                           | 10 - 49 <sup>3</sup> | 1                | 2.9   | 0.017 |         |  |  |  |
|              |                                       |                                                           | $\geq 70$            | 0.3              | 2.9   | 0.005 |         |  |  |  |
| Adult        |                                       |                                                           | < 10                 | 0.0092           | 2.9   | 0.000 |         |  |  |  |
| chronic oral | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                                              | 10 - 49 <sup>3</sup> | 0.0092           | 2.9   | 0.000 | 0.03    |  |  |  |
| toxicity     |                                       |                                                           | $\geq 70$            | 0.0092           | 2.9   | 0.000 |         |  |  |  |
|              |                                       |                                                           | < 10                 | 0.0033           | 5.8   | 0.000 |         |  |  |  |
|              |                                       | adjacent crop                                             | 10 - 49 <sup>3</sup> | 0.0033           | 5.8   | 0.000 |         |  |  |  |
|              |                                       |                                                           | $\geq 70$            | 0.0033           | 5.8   | 0.000 | ]       |  |  |  |
|              |                                       |                                                           | < 10                 | 1                | 0.54  | 0.003 |         |  |  |  |
|              |                                       | next crop                                                 | 10 - 49 <sup>3</sup> | 1                | 0.54  | 0.003 |         |  |  |  |
|              |                                       |                                                           | $\geq 70$            | 1                | 0.54  | 0.003 |         |  |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.
 <sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| vegetables    |                                       |                                        |                      |        |      |       |         |  |  |  |
|---------------|---------------------------------------|----------------------------------------|----------------------|--------|------|-------|---------|--|--|--|
| Intended use  | 9                                     | Root vegetables (Uses: 1, 2, 3, 6, 10) |                      |        |      |       |         |  |  |  |
| Application   | method                                | downward spraying                      |                      |        |      |       |         |  |  |  |
| Crop catego   | ry                                    | Root vegetables <sup>1</sup>           |                      |        |      |       |         |  |  |  |
| Active substa | ance                                  | Glyphosate                             |                      |        |      |       |         |  |  |  |
| Use pattern   |                                       | 1-3 x 1440 g a.e./ha <sup>2</sup>      |                      |        |      |       |         |  |  |  |
| Test design   | Endpoint<br>(lab.)                    | Scenario                               | BBCH                 | Ef     | SV   | ETR   | Trigger |  |  |  |
|               |                                       | treated crop                           | < 10                 | 1      | 0.54 | 0.003 |         |  |  |  |
|               |                                       |                                        | 10 - 39 <sup>3</sup> | 1      | 5.8  | 0.033 |         |  |  |  |
|               |                                       |                                        | $\geq 70$            | 1      | 0    | 0.000 | -       |  |  |  |
|               |                                       | Weeds                                  | < 10                 | 1      | 2.9  | 0.017 |         |  |  |  |
|               |                                       |                                        | 10 - 39 <sup>3</sup> | 1      | 2.9  | 0.017 |         |  |  |  |
|               |                                       |                                        | $\geq 70$            | 0.3    | 2.9  | 0.005 |         |  |  |  |
| Adult         |                                       |                                        | < 10                 | 0.0092 | 2.9  | 0.000 |         |  |  |  |
| chronic oral  | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                           | 10 - 39 <sup>3</sup> | 0.0092 | 2.9  | 0.000 | 0.03    |  |  |  |
| toxicity      |                                       |                                        | $\geq 70$            | 0.0092 | 2.9  | 0.000 |         |  |  |  |
|               |                                       |                                        | < 10                 | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|               |                                       | adjacent crop                          | 10 - 39 <sup>3</sup> | 0.0033 | 5.8  | 0.000 | -       |  |  |  |
|               |                                       |                                        | $\geq 70$            | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|               |                                       |                                        | < 10                 | 1      | 0.54 | 0.003 |         |  |  |  |
|               |                                       | next crop                              | 10 - 39 <sup>3</sup> | 1      | 0.54 | 0.003 |         |  |  |  |
|               |                                       |                                        | $\geq 70$            | 1      | 0.54 | 0.003 |         |  |  |  |

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - root vegetables

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, e.g. fruiting vegetables 2 =tomatoes, eggplants <sup>2</sup> Max. single application rate of 1080 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| vegetables       |                                       |                                         |                      |        |       |       |         |  |  |  |
|------------------|---------------------------------------|-----------------------------------------|----------------------|--------|-------|-------|---------|--|--|--|
| Intended use     | e                                     | Tuber vegetables (Uses: 1, 2, 3, 6, 10) |                      |        |       |       |         |  |  |  |
| Application      | method                                | downward spraying                       |                      |        |       |       |         |  |  |  |
| Crop catego      | ry                                    | potatoes <sup>1</sup>                   |                      |        |       |       |         |  |  |  |
| Active substance |                                       | Glyphosate                              |                      |        |       |       |         |  |  |  |
| Use pattern      |                                       | 1-3 x 1440 g a.e./ha <sup>2</sup>       |                      |        |       |       |         |  |  |  |
| Test design      | Endpoint<br>(lab.)                    | Scenario                                | BBCH                 | Ef     | sv    | ETR   | Trigger |  |  |  |
|                  |                                       | treated crop                            | < 10                 | 1      | 0.012 | 0.000 |         |  |  |  |
|                  |                                       |                                         | 10 - 39 <sup>3</sup> | 1      | 0.92  | 0.005 |         |  |  |  |
|                  |                                       |                                         | $\geq 70$            | 1      | 0     | 0.000 | -       |  |  |  |
|                  |                                       | Weeds                                   | < 10                 | 1      | 2.9   | 0.017 |         |  |  |  |
|                  |                                       |                                         | 10 - 39 <sup>3</sup> | 1      | 2.9   | 0.017 |         |  |  |  |
|                  |                                       |                                         | $\geq 70$            | 0.3    | 2.9   | 0.005 |         |  |  |  |
| Adult            |                                       |                                         | < 10                 | 0.0092 | 2.9   | 0.000 |         |  |  |  |
| chronic oral     | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                            | 10 - 39 <sup>3</sup> | 0.0092 | 2.9   | 0.000 | 0.03    |  |  |  |
| toxicity         |                                       |                                         | $\geq 70$            | 0.0092 | 2.9   | 0.000 |         |  |  |  |
|                  |                                       |                                         | < 10                 | 0.0033 | 5.8   | 0.000 |         |  |  |  |
|                  |                                       | adjacent crop                           | 10 - 39 <sup>3</sup> | 0.0033 | 5.8   | 0.000 | -       |  |  |  |
|                  |                                       |                                         | $\geq 70$            | 0.0033 | 5.8   | 0.000 |         |  |  |  |
|                  |                                       |                                         | < 10                 | 1      | 0.54  | 0.003 |         |  |  |  |
|                  |                                       | next crop                               | 10 - 39 <sup>3</sup> | 1      | 0.54  | 0.003 |         |  |  |  |
|                  |                                       |                                         | $\geq 70$            | 1      | 0.54  | 0.003 |         |  |  |  |

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 -tuber vegetables

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, e.g. fruiting vegetables 2 =tomatoes, eggplants <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| vegetab                                                                               |                                       | 1                                 |                      |        |      |       |         |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|----------------------|--------|------|-------|---------|--|--|
| Intended useBulb vegetables (Uses: 1, 2, 3, 6, 10)Application methoddownward spraying |                                       |                                   |                      |        |      |       |         |  |  |
| Applica                                                                               | tion method                           | lownward spraying                 |                      |        |      |       |         |  |  |
| Crop ca                                                                               | itegory                               | bulb vegetables <sup>1</sup>      |                      |        |      |       |         |  |  |
| Active s                                                                              | substance                             | Glyphosate                        |                      |        |      |       |         |  |  |
| Use pat                                                                               | tern                                  | 1-2 x 1440 g a.e./ha <sup>2</sup> | 2                    |        |      |       |         |  |  |
| Test<br>design                                                                        | Endpoint<br>(lab.)                    | Scenario                          | BBCH                 | Ef     | sv   | ETR   | Trigger |  |  |
|                                                                                       |                                       |                                   | < 10                 | 1      | 0.54 | 0.003 |         |  |  |
|                                                                                       | treated crop                          | treated crop                      | 10 - 39 <sup>3</sup> | 1      | 5.8  | 0.033 |         |  |  |
|                                                                                       |                                       |                                   | $\geq 70$            | 1      | 0    | 0.000 | -       |  |  |
|                                                                                       |                                       | Weeds                             | < 10                 | 1      | 2.9  | 0.017 |         |  |  |
|                                                                                       |                                       |                                   | 10 - 39 <sup>3</sup> | 1      | 2.9  | 0.017 |         |  |  |
|                                                                                       |                                       |                                   | $\geq 70$            | 0.6    | 2.9  | 0.010 |         |  |  |
| Adult                                                                                 |                                       |                                   | < 10                 | 0.0092 | 2.9  | 0.000 |         |  |  |
| chronic<br>oral                                                                       | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                      | 10 - 39 <sup>3</sup> | 0.0092 | 2.9  | 0.000 | 0.03    |  |  |
| toxicity                                                                              | µg alo., see, aay                     |                                   | $\geq 70$            | 0.0092 | 2.9  | 0.000 |         |  |  |
|                                                                                       |                                       |                                   | < 10                 | 0.0033 | 5.8  | 0.000 |         |  |  |
|                                                                                       |                                       | adjacent crop                     | 10 - 39 <sup>3</sup> | 0.0033 | 5.8  | 0.000 |         |  |  |
|                                                                                       |                                       |                                   | $\geq 70$            | 0.0033 | 5.8  | 0.000 |         |  |  |
|                                                                                       |                                       |                                   | < 10                 | 1      | 0.54 | 0.003 | ]       |  |  |
|                                                                                       |                                       | next crop                         | 10 - 39 <sup>3</sup> | 1      | 0.54 | 0.003 | ]       |  |  |
|                                                                                       |                                       |                                   | $\geq 70$            | 1      | 0.54 | 0.003 | ]       |  |  |

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - Bulb vegetables

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup>Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1st Tier Calculator,

 $^{2}$  Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates. <sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

#### First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - Brassica, leafy and stem vegetables

| Intended use       |                    | Brassica, leafy vegetables, stem vegetables<br>(Uses: 1, 2, 3, 6, 10) |                      |    |          |       |             |  |
|--------------------|--------------------|-----------------------------------------------------------------------|----------------------|----|----------|-------|-------------|--|
| Application method | 1                  | downward spraying                                                     |                      |    |          |       |             |  |
| Crop category      |                    | leafy vegetables, le                                                  | ettuce <sup>1</sup>  |    |          |       |             |  |
| Active substance   |                    | Glyphosate                                                            |                      |    |          |       |             |  |
| Use pattern        |                    | 1-3 x 1440 g a.e./ha <sup>2</sup>                                     |                      |    |          |       |             |  |
| Test design        | Endpoint (lab.)    | Scenario                                                              | BBCH                 | Ef | sv       | ETR   | Trigge<br>r |  |
| Leafy vegetables   |                    |                                                                       |                      |    | <u>.</u> |       | <u>.</u>    |  |
| Adult chronic oral | $LDD_{50} > 179.9$ | 1                                                                     | < 10                 | 1  | 0.54     | 0.003 | 0.02        |  |
| toxicity           | µg a.e./bee/day    | treated crop                                                          | 10 - 49 <sup>3</sup> | 1  | 5.8      | 0.033 | 0.03        |  |

| Intended use                |                                              | Brassica, leafy veg<br>(Uses: 1, 2, 3, 6, 1 |                                        | getables |       |       |             |  |  |  |
|-----------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------|----------|-------|-------|-------------|--|--|--|
| Application method          | 1                                            | downward spraying                           | g                                      |          |       |       |             |  |  |  |
| Crop category               |                                              | leafy vegetables, le                        | leafy vegetables, lettuce <sup>1</sup> |          |       |       |             |  |  |  |
| Active substance            |                                              | Glyphosate                                  |                                        |          |       |       |             |  |  |  |
| Use pattern                 |                                              | 1-3 x 1440 g a.e./h                         | $a^2$                                  |          |       |       |             |  |  |  |
| Test design                 | Endpoint (lab.)                              | Scenario                                    | ВВСН                                   | Ef       | sv    | ETR   | Trigge<br>r |  |  |  |
|                             |                                              |                                             | $\geq 70$                              | 1        | 0     | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 1        | 2.9   | 0.017 |             |  |  |  |
|                             |                                              | Weeds                                       | 10 - 49 <sup>3</sup>                   | 1        | 2.9   | 0.017 |             |  |  |  |
|                             |                                              |                                             | ≥ 70                                   | 0.3      | 2.9   | 0.005 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 0.0092   | 2.9   | 0.000 |             |  |  |  |
|                             |                                              | field margin                                | 10 - 49 <sup>3</sup>                   | 0.0092   | 2.9   | 0.000 |             |  |  |  |
|                             |                                              |                                             | ≥ 70                                   | 0.0092   | 2.9   | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              | adjacent crop                               | 10 - 49 <sup>3</sup>                   | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              |                                             | $\geq 70$                              | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 1        | 0.54  | 0.003 |             |  |  |  |
|                             |                                              | next crop                                   | 10 - 49 <sup>3</sup>                   | 1        | 0.54  | 0.003 |             |  |  |  |
|                             |                                              |                                             | $\geq 70$                              | 1        | 0.54  | 0.003 |             |  |  |  |
| Lettuce                     | ·                                            | ·                                           | •                                      | •        |       |       |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 1        | 0.012 | 0.000 |             |  |  |  |
|                             |                                              | treated crop                                | 10 - 49 <sup>3</sup>                   | 1        | 0.92  | 0.005 |             |  |  |  |
|                             |                                              |                                             | ≥ 70                                   | 1        | 0     | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 1        | 2.9   | 0.017 |             |  |  |  |
|                             |                                              | Weeds                                       | 10 - 49 <sup>3</sup>                   | 1        | 2.9   | 0.017 |             |  |  |  |
|                             |                                              |                                             | ≥ 70                                   | 0.3      | 2.9   | 0.005 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 0.0092   | 2.9   | 0.000 |             |  |  |  |
| Adult chronic oral toxicity | LDD <sub>50</sub> > 179.9<br>µg a.e./bee/day | field margin                                | 10 - 49 <sup>3</sup>                   | 0.0092   | 2.9   | 0.000 | 0.03        |  |  |  |
| to Alerty                   | με a.e., bee, day                            |                                             | ≥ 70                                   | 0.0092   | 2.9   | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              | adjacent crop                               | 10 - 49 <sup>3</sup>                   | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              |                                             | $\geq 70$                              | 0.0033   | 5.8   | 0.000 |             |  |  |  |
|                             |                                              |                                             | < 10                                   | 1        | 0.54  | 0.003 |             |  |  |  |
|                             |                                              | next crop                                   | $10 - 49^{3}$                          | 1        | 0.54  | 0.003 |             |  |  |  |
|                             |                                              |                                             | ≥ 70                                   | 1        | 0.54  | 0.003 |             |  |  |  |

<sup>1</sup>Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| Intended use             | e                  | Sugar beet (Uses:       | Sugar beet (Uses: 1, 2, 3, 10) |        |      |       |         |  |  |  |
|--------------------------|--------------------|-------------------------|--------------------------------|--------|------|-------|---------|--|--|--|
| Application method       |                    | downward spraying       |                                |        |      |       |         |  |  |  |
| Crop catego              | ry                 | sugar beet <sup>1</sup> |                                |        |      |       |         |  |  |  |
| Active subst             | ance               | Glyphosate              |                                |        |      |       |         |  |  |  |
| Use pattern              |                    | 1-3 x 1440 g a.e./h     | $a^2$                          |        |      |       |         |  |  |  |
| Test design              | Endpoint<br>(lab.) | Scenario                | BBCH                           | Ef     | SV   | ETR   | Trigger |  |  |  |
|                          |                    | tao                     | turnet all anon                | < 10   | 1    | 0.54  | 0.003   |  |  |  |
|                          |                    | treated crop            | $\geq 70$                      | 1      | 0    | 0.000 | -       |  |  |  |
|                          |                    | Weeds                   | < 10                           | 1      | 2.9  | 0.017 |         |  |  |  |
|                          |                    |                         | $\geq 70$                      | 0.25   | 2.9  | 0.004 |         |  |  |  |
| Adult                    | $LDD_{50} > 179.9$ | C 11 ·                  | < 10                           | 0.0092 | 2.9  | 0.000 |         |  |  |  |
| chronic oral<br>toxicity | µg a.e./bee/day    | field margin            | $\geq 70$                      | 0.0092 | 2.9  | 0.000 | 0.03    |  |  |  |
| ·                        |                    |                         | < 10                           | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|                          |                    | adjacent crop           | $\geq 70$                      | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|                          |                    | next crop               | < 10                           | 1      | 0.54 | 0.003 |         |  |  |  |
|                          |                    |                         | $\geq 70$                      | 1      | 0.54 | 0.003 | 1       |  |  |  |

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - Sugar beet

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

| -                  |                                       |                                          |                      |        |      |       |         |  |  |  |
|--------------------|---------------------------------------|------------------------------------------|----------------------|--------|------|-------|---------|--|--|--|
| Intended use       |                                       | Legume vegetables (Uses: 1, 2, 3, 6, 10) |                      |        |      |       |         |  |  |  |
| Application method |                                       | downward spraying                        |                      |        |      |       |         |  |  |  |
| Crop catego        | ry                                    | pulses <sup>1</sup>                      |                      |        |      |       |         |  |  |  |
| Active substance   |                                       | Glyphosate                               | Glyphosate           |        |      |       |         |  |  |  |
| Use pattern        |                                       | 1-2 x 1440 g a.e./ha <sup>2</sup>        |                      |        |      |       |         |  |  |  |
| Test design        | Endpoint<br>(lab.)                    | Scenario                                 | BBCH                 | Ef     | SV   | ETR   | Trigger |  |  |  |
|                    |                                       |                                          | < 10                 | 1      | 0.54 | 0.003 |         |  |  |  |
|                    |                                       | treated crop                             | 10 49 <sup>3</sup>   | 1      | 5.8  | 0.033 |         |  |  |  |
|                    |                                       |                                          | $\geq 70$            | 1      | 0    | 0.000 |         |  |  |  |
|                    |                                       | Weeds                                    | < 10                 | 1      | 2.9  | 0.017 |         |  |  |  |
|                    |                                       |                                          | 10 - 49 <sup>3</sup> | 1      | 2.9  | 0.017 |         |  |  |  |
|                    |                                       |                                          | $\geq 70$            | 0.3    | 2.9  | 0.005 |         |  |  |  |
| Adult              |                                       |                                          | < 10                 | 0.0092 | 2.9  | 0.000 |         |  |  |  |
| chronic oral       | $LDD_{50} > 179.9$<br>µg a.e./bee/day | field margin                             | 10 - 49 <sup>3</sup> | 0.0092 | 2.9  | 0.000 | 0.03    |  |  |  |
| toxicity           | µg u.e., 800, uuj                     |                                          | $\geq 70$            | 0.0092 | 2.9  | 0.000 |         |  |  |  |
|                    |                                       |                                          | < 10                 | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|                    |                                       | adjacent crop                            | 10 - 49 <sup>3</sup> | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|                    |                                       |                                          | $\geq 70$            | 0.0033 | 5.8  | 0.000 |         |  |  |  |
|                    |                                       |                                          | < 10                 | 1      | 0.54 | 0.003 | ]       |  |  |  |
|                    |                                       | next crop                                | 10 - 49 <sup>3</sup> | 1      | 0.54 | 0.003 |         |  |  |  |
|                    |                                       |                                          | $\geq 70$            | 1      | 0.54 | 0.003 |         |  |  |  |

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 - legume vegetables

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator,

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

First-tier assessment (oral exposure) of the risk for honey bees due to the use of MON 52276 on fruiting, root, bulb and leafy vegetables and pulses for "treated crop" scenario at all application rates for uses 6a and 6b

| Сгор               | Fruiting vegetables 1, Root veg and 6b)   | etables, Bulb vegetable                         | s, Leafy v | vegetable | s, Pulses | s (uses ба |  |  |  |
|--------------------|-------------------------------------------|-------------------------------------------------|------------|-----------|-----------|------------|--|--|--|
| Application method | downward spraying                         | ownward spraying                                |            |           |           |            |  |  |  |
| Active substance   | Glyphosate                                | lyphosate                                       |            |           |           |            |  |  |  |
| Toxicity value     | $LDD_{50} > 179.9 \ \mu g \ a.e./bee/day$ | $LDD_{50} > 179.9 \ \mu g \ a.e./bee/day$       |            |           |           |            |  |  |  |
| Scenario           | BBCH stage                                | Max. single<br>application rate<br>(kg a.e./ha) | Ef         | SV        | ETR       | Trigger    |  |  |  |
|                    |                                           | 1.08                                            | 1          | 5.8       | 0.025     | 0.02       |  |  |  |
| Treated crop       | BBCH 10-39 or BBCH 10-49                  | 0.72                                            | 1          | 5.8       | 0.017     | 0.03       |  |  |  |

# Assessment of the risk for bees due to the use of MON 52276 considering exposure to contaminated water

| contaminateu                                                               |           |                             |                        |                  |         |  |  |  |
|----------------------------------------------------------------------------|-----------|-----------------------------|------------------------|------------------|---------|--|--|--|
| Intended use                                                               |           | All uses (Uses: 1           | a-10c)                 |                  |         |  |  |  |
| Application met                                                            | hod       | downward sprayi             | aying                  |                  |         |  |  |  |
| Active substance                                                           | e         | Glyphosate                  |                        |                  |         |  |  |  |
| Use pattern 2 x 1440 g a.e./ha (worst-case identified for PECsw see B.9.4) |           |                             |                        |                  |         |  |  |  |
| Water solubility                                                           |           | 100000 mg/L (se<br>2.5/001) | e Volume 1,            | (2020a)          | , KCA   |  |  |  |
| PEC <sub>sw</sub>                                                          |           | worst case Step 2           | c of 69.95 μg/L        |                  |         |  |  |  |
| PEC <sub>puddle</sub>                                                      |           | worst case Step 2           | c of 65.47 μg/L        |                  |         |  |  |  |
| Surface water <sup>1</sup> (                                               | provision | al)                         |                        |                  |         |  |  |  |
| Test design                                                                | Enc       | lpoint (lab.)               | water consumption (µl) | ETR <sup>1</sup> | Trigger |  |  |  |
| Acute                                                                      | 77 μg a.e | e./bee                      | 11.4                   | 0.00             | 0.2     |  |  |  |
| Chronic                                                                    | >179.9 µ  | g a.e./bee/day              | 11.4                   | 0.000            | 0.03    |  |  |  |
| Larvae                                                                     | 75.6 μg a | a.e./larva                  | 111                    | 0.00             | 0.2     |  |  |  |
| Puddle water <sup>1,2</sup>                                                | provision | al)                         |                        |                  |         |  |  |  |
| Test design                                                                | Enc       | lpoint (lab.)               | water consumption (µl) | ETR <sup>2</sup> | Trigger |  |  |  |
| Acute                                                                      | 77 μg a.e | e./bee                      | 11.4                   | 0.00             | 0.2     |  |  |  |
| Chronic                                                                    | >179.9 µ  | g a.e./bee/day              | 11.4                   | 0.000            | 0.03    |  |  |  |
| Larvae                                                                     | 75.6 μg a | a.e./larva                  | 111                    | 0.00             | 0.2     |  |  |  |
| Guttation water                                                            |           |                             |                        |                  |         |  |  |  |
| Test design                                                                | Enc       | lpoint (lab.)               | water consumption (µl) | ETR              | Trigger |  |  |  |
| Acute                                                                      | 77 μg a.e | e./bee                      | 11.4                   | 14.8             | 0.2     |  |  |  |
| Chronic                                                                    | >179.9 µ  | g a.e./bee/day              | 11.4                   | <3.3             | 0.03    |  |  |  |
| Larvae                                                                     | 75.6 μg a | a.e./larva                  | 111                    | 105.7            | 0.2     |  |  |  |

#### First Tier risk assessment for acute oral exposure of bumble bees

| Intended use | 9                     | Orchard crops, vines (Uses: 4a, 5a) |          |                           |      |         |         |  |
|--------------|-----------------------|-------------------------------------|----------|---------------------------|------|---------|---------|--|
| Application  | method                | downward spraying                   |          |                           |      |         |         |  |
| Crop Catego  | ory                   | under crop application <sup>1</sup> |          |                           |      |         |         |  |
| Active subst | ance                  | Glyphosate                          |          |                           |      |         |         |  |
| Use pattern  |                       | 1-2 x 1440 g a.e./ha <sup>2</sup>   |          |                           |      |         |         |  |
| Test design  | Endpoint<br>(lab.)    | Scenario                            | BBCH     | $\mathbf{E}_{\mathbf{f}}$ | SV   | ETR     | Trigger |  |
|              |                       |                                     | d-       | weed <10                  | 1    | 0.46    | < 0.01  |  |
|              |                       | weeds                               | weed ≥10 | 1                         | 6.5  | < 0.023 |         |  |
|              |                       | C 11 .                              | weed <10 | 0.0092                    | 6.5  | < 0.01  |         |  |
| Acute oral   | $LD_{50} > 412 \mu g$ | field margin                        | weed ≥10 | 0.0092                    | 6.5  | < 0.01  | 0.026   |  |
| toxicity     | a.e./bee              | 1                                   | weed <10 | 0.0033                    | 11.2 | < 0.01  | 0.036   |  |
|              |                       | adjacent crop                       | weed ≥10 | 0.0033                    | 11.2 | < 0.01  |         |  |
|              |                       | next crop                           | weed <10 | 1                         | 0.9  | < 0.01  |         |  |
|              |                       |                                     | weed ≥10 | 1                         | 0.9  | < 0.01  | 1       |  |

First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 in orchard crops and vines at 1440 g a.e./ha

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1st Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation

| First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 – railroad |
|----------------------------------------------------------------------------------------------------------|
| tracks at 1800 g a.e./ha                                                                                 |

| Intended use | 9                       | Railroad tracks (Uses: 7a           | ı, 7b)                                      |        |      |         |       |  |  |
|--------------|-------------------------|-------------------------------------|---------------------------------------------|--------|------|---------|-------|--|--|
| Application  | method                  | downward spraying                   |                                             |        |      |         |       |  |  |
| Crop Catego  | ory                     | under crop application <sup>1</sup> |                                             |        |      |         |       |  |  |
| Active subst | ance                    | Glyphosate                          |                                             |        |      |         |       |  |  |
| Use pattern  |                         | 1-2 x 1800 g a.e./ha <sup>2</sup>   |                                             |        |      |         |       |  |  |
| Test design  | Endpoint<br>(lab.)      | Scenario                            | Scenario BBCH E <sub>f</sub> SV ETR Trigger |        |      |         |       |  |  |
|              |                         | 4-                                  | weed <10                                    | 1      | 0.46 | < 0.002 |       |  |  |
|              |                         | weeds                               | weed ≥10                                    | 1      | 6.5  | < 0.028 |       |  |  |
|              |                         | C 11 ·                              | weed <10                                    | 0.0092 | 6.5  | < 0.001 |       |  |  |
| Acute oral   | $LD_{50} > 412 \ \mu g$ | field margin                        | weed $\geq 10$                              | 0.0092 | 6.5  | < 0.001 | 0.026 |  |  |
| toxicity     | a.e./bee                | 1                                   | weed <10                                    | 0.0033 | 11.2 | < 0.001 | 0.036 |  |  |
|              |                         | adjacent crop                       | weed ≥10                                    | 0.0033 | 11.2 | < 0.001 |       |  |  |
|              |                         | next crop                           | weed <10                                    | 1      | 0.9  | < 0.004 |       |  |  |
|              |                         |                                     | weed $\geq 10$                              | 1      | 0.9  | < 0.004 |       |  |  |

<sup>1</sup> As no definite scenario for railroad tracks is provided by the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1st Tier Calculator, the under crop application was considered to address uses on railroad tracks <sup>2</sup> Max. single application rate of 1800 g a.e./ha considered for risk calculation

| First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 – invasive |
|----------------------------------------------------------------------------------------------------------|
| plant species in agricultural and non-agricultural areas at 1800 g a.e./ha                               |

| Intended use       |                       | invasive plant species in           | invasive plant species in agricultural and non-agricultural areas (Uses: 8, 9) |        |      |         |         |  |  |
|--------------------|-----------------------|-------------------------------------|--------------------------------------------------------------------------------|--------|------|---------|---------|--|--|
| Application method |                       | downward spraying                   |                                                                                |        |      |         |         |  |  |
| Crop Catego        | ory                   | under crop application <sup>1</sup> |                                                                                |        |      |         |         |  |  |
| Active subst       | ance                  | Glyphosate                          |                                                                                |        |      |         |         |  |  |
| Use pattern        |                       | 1 x 1800 g a.e./ha <sup>2</sup>     |                                                                                |        |      |         |         |  |  |
| Test design        | Endpoint<br>(lab.)    | Scenario                            | BBCH                                                                           | Ef     | SV   | ETR     | Trigger |  |  |
|                    |                       |                                     | weed <10                                                                       | 1      | 0.46 | < 0.002 |         |  |  |
|                    |                       | weeds                               | weed >10                                                                       | 1      | 6.5  | < 0.028 |         |  |  |
|                    |                       | C 11 .                              | weed <10                                                                       | 0.0092 | 6.5  | < 0.001 |         |  |  |
| Acute oral         | $LD_{50} > 412 \mu g$ | field margin                        | weed >10                                                                       | 0.0092 | 6.5  | < 0.001 | 0.026   |  |  |
| toxicity           | a.e./bee              | 1.                                  | weed <10                                                                       | 0.0033 | 11.2 | < 0.001 | - 0.036 |  |  |
|                    |                       | adjacent crop                       | weed >10                                                                       | 0.0033 | 11.2 | < 0.001 |         |  |  |
|                    |                       | nout onen                           | weed <10                                                                       | 1      | 0.9  | < 0.004 |         |  |  |
|                    |                       | next crop                           | weed >10                                                                       | 1      | 0.9  | < 0.004 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> As no definite scenario for invasive weeds is provided by the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1st Tier Calculator, under crop application: giant hogweed (Heracleum spp.), Japanese knotweed (*Reynoutria japonica*) <sup>2</sup> Max. single application rate of 1800 g a.e./ha considered for risk calculation

#### First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 –presowing, pre-planting and post-harvest uses at 1440 g a.e./ha

| Intended use        |                                                                                                |    | Root & tuber vegetables, Bulb vegetables, Fruiting vegetables, Brassica,<br>Leafy vegetables, Stem vegetables, Sugar beet (Uses: 1a, 2a) |      |                  |      |         |         |  |
|---------------------|------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|------|---------|---------|--|
| Application         | method                                                                                         | do | wnward spraying                                                                                                                          |      |                  |      |         |         |  |
| Crop catego         | <b>rop category</b> bare soil application – crop attractive for pollen and nectar <sup>1</sup> |    |                                                                                                                                          |      |                  |      |         |         |  |
| Active substa       | ance                                                                                           | Gl | lyphosate                                                                                                                                |      |                  |      |         |         |  |
| Use pattern         | se pattern 1-2 x 1440 g a.e./ha <sup>2</sup>                                                   |    |                                                                                                                                          |      |                  |      |         |         |  |
| Test design         | Endpoint<br>(lab.)                                                                             | ;  | Scenario                                                                                                                                 | BBCH | $\mathbf{E_{f}}$ | SV   | ETR     | Trigger |  |
|                     |                                                                                                |    | treated crop                                                                                                                             | <10  | 1                | 0.9  | < 0.004 |         |  |
|                     |                                                                                                |    | weeds                                                                                                                                    | <10  | 1                | 0.46 | < 0.002 |         |  |
| Acute oral toxicity | Acute oral $LD_{50} > 412 \ \mu g$<br>toxicity a.e./bee                                        |    | field margin                                                                                                                             | <10  | 0.0092           | 6.5  | < 0.001 | 0.036   |  |
|                     |                                                                                                |    | adjacent crop                                                                                                                            | <10  | 0.0033           | 11.2 | < 0.001 |         |  |
|                     |                                                                                                |    | next crop                                                                                                                                | <10  | 1                | 0.9  | < 0.004 |         |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio.

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower application rates.

### First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 – fruiting vegetables

| Intended us         | е                                   | Fruiting vegetables, (Us                                  | es: 1, 2, 3, 6, 1    | 10)    |      |        |         |  |  |  |
|---------------------|-------------------------------------|-----------------------------------------------------------|----------------------|--------|------|--------|---------|--|--|--|
| Application         | method                              | downward spraying                                         |                      |        |      |        |         |  |  |  |
| Crop catego         | ory                                 | fruiting vegetables 1, fruiting vegetables 2 <sup>1</sup> |                      |        |      |        |         |  |  |  |
| Active subst        | ance                                | Glyphosate                                                |                      |        |      |        |         |  |  |  |
| Use pattern         |                                     | 1-2 x 1440 g a.e./ha <sup>2</sup>                         |                      |        |      |        |         |  |  |  |
| Test design         | Endpoint<br>(lab.)                  | Scenario                                                  | BBCH                 | Ef     | SV   | ETR    | Trigger |  |  |  |
| Fruiting veg        | etables 1                           |                                                           |                      |        |      |        | •       |  |  |  |
|                     |                                     |                                                           | < 10                 | 1      | 0.9  | 0.0031 |         |  |  |  |
|                     |                                     | treated crop                                              | 10 - 49 <sup>3</sup> | 1      | 11.2 | 0.0391 |         |  |  |  |
|                     |                                     |                                                           | $\geq 70$            | 1      | 0    | 0.0000 |         |  |  |  |
|                     |                                     | Weeds                                                     | < 10                 | 1      | 6.5  | 0.0227 |         |  |  |  |
|                     |                                     |                                                           | 10 - 49 <sup>3</sup> | 1      | 6.5  | 0.0227 | -       |  |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.3    | 6.5  | 0.0068 |         |  |  |  |
| Acute oral toxicity | $LD_{50} > 412 \ \mu g$<br>a.e./bee |                                                           | < 10                 | 0.0092 | 6.5  | 0.0002 | 0.036   |  |  |  |
| toxicity            | a.e., bee                           | field margin                                              | 10 - 49 <sup>3</sup> | 0.0092 | 6.5  | 0.0002 |         |  |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.0092 | 6.5  | 0.0002 |         |  |  |  |
|                     |                                     |                                                           | < 10                 | 0.0033 | 11.2 | 0.0001 | ]       |  |  |  |
|                     |                                     | adjacent crop                                             | 10 - 49 <sup>3</sup> | 0.0033 | 11.2 | 0.0001 | ]       |  |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.0033 | 11.2 | 0.0001 | 1       |  |  |  |
|                     |                                     | next crop                                                 | < 10                 | 1      | 0.9  | 0.0031 | ]       |  |  |  |

| Intended us         |                                     | Emiting an estables (Us                                   | 1 2 2 6              | 10)              |      |        |         |  |  |
|---------------------|-------------------------------------|-----------------------------------------------------------|----------------------|------------------|------|--------|---------|--|--|
|                     |                                     | Fruiting vegetables, (Use                                 | es: 1, 2, 3, 6,      | 10)              |      |        |         |  |  |
| Application         | method                              | downward spraying                                         |                      |                  |      |        |         |  |  |
| Crop catego         | ory                                 | fruiting vegetables 1, fruiting vegetables 2 <sup>1</sup> |                      |                  |      |        |         |  |  |
| Active subst        | tance                               | Glyphosate                                                |                      |                  |      |        |         |  |  |
| Use pattern         |                                     | 1-2 x 1440 g a.e./ha <sup>2</sup>                         |                      |                  |      |        |         |  |  |
| Test design         | Endpoint<br>(lab.)                  | Scenario                                                  | BBCH                 | $\mathbf{E_{f}}$ | SV   | ETR    | Trigger |  |  |
|                     |                                     |                                                           | 10 - 49 <sup>3</sup> | 1                | 0.9  | 0.0031 |         |  |  |
|                     |                                     |                                                           | $\geq 70$            | 1                | 0.9  | 0.0031 |         |  |  |
| Fruiting veg        | getables 2                          |                                                           |                      |                  |      |        |         |  |  |
|                     |                                     |                                                           | < 10                 | 1                | 0.03 | 0.0001 |         |  |  |
|                     |                                     | treated crop<br>Weeds                                     | 10 - 49 <sup>3</sup> | 1                | 2.3  | 0.0080 |         |  |  |
|                     |                                     |                                                           | $\geq 70$            | 1                | 0    | 0.0000 |         |  |  |
|                     |                                     |                                                           | < 10                 | 1                | 6.5  | 0.0227 |         |  |  |
|                     |                                     |                                                           | 10 - 49 <sup>3</sup> | 1                | 6.5  | 0.0227 |         |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.3              | 6.5  | 0.0068 |         |  |  |
|                     |                                     |                                                           | < 10                 | 0.0092           | 6.5  | 0.0002 |         |  |  |
| Acute oral toxicity | $LD_{50} > 412 \ \mu g$<br>a.e./bee | field margin                                              | 10 - 49 <sup>3</sup> | 0.0092           | 6.5  | 0.0002 | 0.036   |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.0092           | 6.5  | 0.0002 |         |  |  |
|                     |                                     |                                                           | < 10                 | 0.0033           | 11.2 | 0.0001 |         |  |  |
|                     |                                     | adjacent crop                                             | 10 - 49 <sup>3</sup> | 0.0033           | 11.2 | 0.0001 |         |  |  |
|                     |                                     |                                                           | $\geq 70$            | 0.0033           | 11.2 | 0.0001 |         |  |  |
|                     |                                     |                                                           | < 10                 | 1                | 0.9  | 0.0031 |         |  |  |
|                     |                                     | next crop                                                 | 10 - 49 <sup>3</sup> | 1                | 0.9  | 0.0031 |         |  |  |
|                     |                                     |                                                           | $\geq 70$            | 1                | 0.9  | 0.0031 |         |  |  |

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator,

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates. <sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| Interned ad use Dest as a stables (Users 1, 2, 2, 4, 10) |                                     |                                   |                      |        |      |        |         |  |  |  |
|----------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------|--------|------|--------|---------|--|--|--|
| Intended use                                             | e                                   | Root vegetables (Uses: 1          | , 2, 3, 6, 10)       |        |      |        |         |  |  |  |
| Application                                              | method                              | downward spraying                 |                      |        |      |        |         |  |  |  |
| Crop catego                                              | ry                                  | Root vegetables <sup>1</sup>      |                      |        |      |        |         |  |  |  |
| Active subst                                             | ance                                | Glyphosate                        |                      |        |      |        |         |  |  |  |
| Use pattern                                              |                                     | 1-3 x 1440 g a.e./ha <sup>2</sup> |                      |        |      |        |         |  |  |  |
| Test design                                              | Endpoint<br>(lab.)                  | Scenario                          | BBCH                 | Ef     | SV   | ETR    | Trigger |  |  |  |
|                                                          |                                     |                                   | < 10                 | 1      | 0.9  | 0.0031 |         |  |  |  |
|                                                          |                                     | treated crop                      | 10 - 39 <sup>3</sup> | 1      | 11.2 | 0.0391 |         |  |  |  |
|                                                          |                                     |                                   | $\geq 70$            | 1      | 0    | 0.0000 |         |  |  |  |
|                                                          |                                     | Weeds                             | < 10                 | 1      | 6.5  | 0.0227 |         |  |  |  |
|                                                          |                                     |                                   | 10 - 39 <sup>3</sup> | 1      | 6.5  | 0.0227 |         |  |  |  |
|                                                          |                                     |                                   | $\geq 70$            | 0.3    | 6.5  | 0.0068 | _       |  |  |  |
|                                                          |                                     |                                   | < 10                 | 0.0092 | 6.5  | 0.0002 |         |  |  |  |
| Acute oral toxicity                                      | $LD_{50} > 412 \ \mu g$<br>a.e./bee | field margin                      | 10 - 39 <sup>3</sup> | 0.0092 | 6.5  | 0.0002 | 0.036   |  |  |  |
|                                                          |                                     |                                   | $\geq 70$            | 0.0092 | 6.5  | 0.0002 |         |  |  |  |
|                                                          |                                     |                                   | < 10                 | 0.0033 | 11.2 | 0.0001 |         |  |  |  |
|                                                          |                                     | adjacent crop                     | 10 - 39 <sup>3</sup> | 0.0033 | 11.2 | 0.0001 |         |  |  |  |
|                                                          |                                     |                                   | $\geq 70$            | 0.0033 | 11.2 | 0.0001 | ]       |  |  |  |
|                                                          |                                     |                                   | < 10                 | 1      | 0.9  | 0.0031 | ]       |  |  |  |
|                                                          |                                     | next crop                         | 10 - 39 <sup>3</sup> | 1      | 0.9  | 0.0031 | ]       |  |  |  |
|                                                          |                                     |                                   | $\geq 70$            | 1      | 0.9  | 0.0031 |         |  |  |  |

First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 rootvegetables

<sup>1</sup>Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1st Tier Calculator,

 $^{2}$  Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates. <sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

#### First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 - tuber vegetables

| Intended use      | 9                     | Tuber vegetables (Uses: 1, 2, 3, 6, 10) |                              |   |          |        |       |  |
|-------------------|-----------------------|-----------------------------------------|------------------------------|---|----------|--------|-------|--|
| Application       | method                | downward spraying                       |                              |   |          |        |       |  |
| Crop catego       | ry                    | potatoes <sup>1</sup>                   |                              |   |          |        |       |  |
| Active subst      | ance                  | Glyphosate                              |                              |   |          |        |       |  |
| Use pattern       |                       | 1-3 x 1440 g a.e./ha <sup>2</sup>       |                              |   |          |        |       |  |
| Test design       | Endpoint<br>(lab.)    | Scenario                                | Scenario BBCH Ef SV ETR Trig |   |          |        |       |  |
|                   |                       |                                         | < 10                         | 1 | 0.03     | 0.0001 |       |  |
| Acute oral        | $LD_{50} > 412 \mu g$ | treated crop                            | 10 - 39 <sup>3</sup>         | 1 | 2.3      | 0.0080 | 0.026 |  |
| toxicity a.e./bee |                       |                                         | $\geq 70$                    | 1 | 0 0.0000 |        | 0.036 |  |
|                   |                       | Weeds                                   | < 10                         | 1 | 6.5      | 0.0227 |       |  |

| Intended use                                         |        | Tuber vegetables (Uses:           | 1, 2, 3, 6, 10)      |        |      |        |         |  |  |
|------------------------------------------------------|--------|-----------------------------------|----------------------|--------|------|--------|---------|--|--|
| Application                                          | method | downward spraying                 |                      |        |      |        |         |  |  |
| Crop categor                                         | ry     | potatoes <sup>1</sup>             |                      |        |      |        |         |  |  |
| Active substa                                        | ance   | Glyphosate                        |                      |        |      |        |         |  |  |
| Use pattern                                          |        | 1-3 x 1440 g a.e./ha <sup>2</sup> |                      |        |      |        |         |  |  |
| Test designEndpoint<br>(lab.)ScenarioBBCHEfSVETRTrig |        |                                   |                      |        |      |        | Trigger |  |  |
|                                                      |        |                                   | 10 - 39 <sup>3</sup> | 1      | 6.5  | 0.0227 |         |  |  |
|                                                      |        |                                   |                      |        |      |        |         |  |  |
|                                                      |        |                                   | < 10                 | 0.0092 | 6.5  | 0.0002 |         |  |  |
|                                                      |        | field margin                      | 10 - 39 <sup>3</sup> | 0.0092 | 6.5  | 0.0002 |         |  |  |
|                                                      |        |                                   | $\geq 70$            | 0.0092 | 6.5  | 0.0002 |         |  |  |
|                                                      |        |                                   | < 10                 | 0.0033 | 11.2 | 0.0001 |         |  |  |
|                                                      |        | adjacent crop                     | 10 - 39 <sup>3</sup> | 0.0033 | 11.2 | 0.0001 |         |  |  |
|                                                      |        |                                   | $\geq 70$            | 0.0033 | 11.2 | 0.0001 |         |  |  |
|                                                      |        |                                   | < 10                 | 1      | 0.9  | 0.0031 |         |  |  |
|                                                      |        | next crop                         | 10 - 39 <sup>3</sup> | 1      | 0.9  | 0.0031 |         |  |  |
|                                                      |        |                                   | $\geq 70$            | 1      | 0.9  | 0.0031 |         |  |  |

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| vegetab        |                                     |                              |                                 |        |        |        |       |  |  |  |
|----------------|-------------------------------------|------------------------------|---------------------------------|--------|--------|--------|-------|--|--|--|
| Intende        | d use                               | Bulb vegetables (Us          | ses: 1, 2, 3, 6, 10)            |        |        |        |       |  |  |  |
| Applica        | tion method                         | downward spraying            |                                 |        |        |        |       |  |  |  |
| Crop ca        | itegory                             | bulb vegetables <sup>1</sup> |                                 |        |        |        |       |  |  |  |
| Active s       | substance                           | Glyphosate                   |                                 |        |        |        |       |  |  |  |
| Use pat        | tern                                | 1-2 x 1440 g a.e./ha         | 2                               |        |        |        |       |  |  |  |
| Test<br>design | Endpoint<br>(lab.)                  | Scenario                     | Scenario BBCH Ef SV ETR Trigger |        |        |        |       |  |  |  |
|                |                                     |                              | < 10                            | 1      | 0.9    | 0.0031 |       |  |  |  |
|                |                                     | treated crop                 | 10 - 39 <sup>3</sup>            | 1      | 11.2   | 0.0391 |       |  |  |  |
|                |                                     | $\geq 70$                    | 1                               | 0      | 0.0000 | 1      |       |  |  |  |
|                |                                     |                              | < 10                            | 1      | 6.5    | 0.0227 |       |  |  |  |
|                |                                     | Weeds                        | 10 - 39 <sup>3</sup>            | 1      | 6.5    | 0.0227 |       |  |  |  |
|                |                                     |                              | $\geq 70$                       | 0.6    | 6.5    | 0.0136 |       |  |  |  |
| Acute          |                                     |                              | < 10                            | 0.0092 | 6.5    | 0.0002 |       |  |  |  |
| oral           | $LD_{50} > 412 \ \mu g$<br>a.e./bee | field margin                 | 10 - 39 <sup>3</sup>            | 0.0092 | 6.5    | 0.0002 | 0.036 |  |  |  |
| toxicity       |                                     |                              | $\geq 70$                       | 0.0092 | 6.5    | 0.0002 |       |  |  |  |
|                |                                     |                              | < 10                            | 0.0033 | 11.2   | 0.0001 |       |  |  |  |
|                |                                     | adjacent crop                | 10 - 39 <sup>3</sup>            | 0.0033 | 11.2   | 0.0001 |       |  |  |  |
|                |                                     | $\geq 70$                    | 0.0033                          | 11.2   | 0.0001 |        |       |  |  |  |
|                |                                     |                              | < 10                            | 1      | 0.9    | 0.0031 |       |  |  |  |
|                |                                     | next crop                    | 10 - 39 <sup>3</sup>            | 1      | 0.9    | 0.0031 |       |  |  |  |
|                |                                     |                              | $\geq 70$                       | 1      | 0.9    | 0.0031 |       |  |  |  |

First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 - Bulb vegetables

<sup>1</sup>Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

### First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 - Brassica, leafy and stem vegetables

| Intended use                |                                               |                                               | Brassica, leafy vegetables, stem vegetables<br>(Uses: 1, 2, 3, 6, 10) |    |          |          |             |  |  |
|-----------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|----|----------|----------|-------------|--|--|
| Application method          | 1                                             | downward spraying                             |                                                                       |    |          |          |             |  |  |
| Crop category               |                                               | leafy vegetables, le                          | ttuce <sup>1</sup>                                                    |    |          |          |             |  |  |
| Active substance Glyphosate |                                               |                                               |                                                                       |    |          |          |             |  |  |
| Use pattern                 | Use pattern 1-3 x 1440 g a.e./ha <sup>2</sup> |                                               |                                                                       |    |          |          |             |  |  |
| Test design                 | Endpoint (lab.)                               | Scenario                                      | BBCH                                                                  | Ef | sv       | ETR      | Trigge<br>r |  |  |
| Leafy vegetables            |                                               |                                               |                                                                       |    | <u>.</u> | <u>.</u> |             |  |  |
| A                           | $LD_{50} > 412 \ \mu g$                       | 1                                             | < 10                                                                  | 1  | 0.9      | 0.0031   | 0.026       |  |  |
| Acute oral toxicity         | a.e./bee                                      | treated crop $10 - 49^3$ 1 11.2 <b>0.0391</b> |                                                                       |    |          | 0.036    |             |  |  |

| Intended use        |                                     | Brassica, leafy veg<br>(Uses: 1, 2, 3, 6, 1 |                      | getables |      |        |             |  |  |  |
|---------------------|-------------------------------------|---------------------------------------------|----------------------|----------|------|--------|-------------|--|--|--|
| Application method  | 1                                   | downward spraying                           |                      |          |      |        |             |  |  |  |
| Crop category       |                                     | leafy vegetables, lettuce <sup>1</sup>      |                      |          |      |        |             |  |  |  |
| Active substance    |                                     | Glyphosate                                  |                      |          |      |        |             |  |  |  |
| Use pattern         |                                     | 1-3 x 1440 g a.e./ha <sup>2</sup>           |                      |          |      |        |             |  |  |  |
| Test design         | Endpoint (lab.)                     | Scenario                                    | BBCH                 | Ef       | SV   | ETR    | Trigge<br>r |  |  |  |
|                     |                                     |                                             | $\geq 70$            | 1        | 0    | 0.0000 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 1        | 6.5  | 0.0227 |             |  |  |  |
|                     |                                     | Weeds                                       | 10 - 49 <sup>3</sup> | 1        | 6.5  | 0.0227 |             |  |  |  |
|                     |                                     |                                             | $\geq 70$            | 0.3      | 6.5  | 0.0068 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 0.0092   | 6.5  | 0.0002 |             |  |  |  |
|                     |                                     | field margin                                | 10 - 49              | 0.0092   | 6.5  | 0.0002 |             |  |  |  |
|                     |                                     |                                             | ≥ 70                 | 0.0092   | 6.5  | 0.0002 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     | adjacent crop                               | 10 - 49 <sup>3</sup> | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     |                                             | $\geq 70$            | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 1        | 0.9  | 0.0031 |             |  |  |  |
|                     |                                     | next crop                                   | 10 - 49 <sup>3</sup> | 1        | 0.9  | 0.0031 |             |  |  |  |
|                     |                                     |                                             | ≥ 70                 | 1        | 0.9  | 0.0031 |             |  |  |  |
| Lettuce             | ·                                   | ·                                           | ·                    | ·        |      | •      |             |  |  |  |
|                     |                                     |                                             | < 10                 | 1        | 0.03 | 0.0001 |             |  |  |  |
|                     |                                     | treated crop                                | 10 - 49 <sup>3</sup> | 1        | 2.3  | 0.0080 |             |  |  |  |
|                     |                                     |                                             | $\geq 70$            | 1        | 0    | 0.0000 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 1        | 6.5  | 0.0227 |             |  |  |  |
|                     |                                     | Weeds                                       | 10 - 49 <sup>3</sup> | 1        | 6.5  | 0.0227 |             |  |  |  |
|                     |                                     |                                             | $\geq 70$            | 0.3      | 6.5  | 0.0068 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 0.0092   | 6.5  | 0.0002 | 0.026       |  |  |  |
| Acute oral toxicity | $LD_{50} > 412 \ \mu g$<br>a.e./bee | field margin                                | 10 - 49 <sup>3</sup> | 0.0092   | 6.5  | 0.0002 | 0.036       |  |  |  |
|                     | u.e., 000                           |                                             | $\geq 70$            | 0.0092   | 6.5  | 0.0002 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     | adjacent crop                               | 10 - 49 <sup>3</sup> | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     |                                             | ≥ 70                 | 0.0033   | 11.2 | 0.0001 |             |  |  |  |
|                     |                                     |                                             | < 10                 | 1        | 0.9  | 0.0031 |             |  |  |  |
|                     |                                     | next crop                                   | $10 - 49^3$          | 1        | 0.9  | 0.0031 |             |  |  |  |
|                     |                                     |                                             | ≥ 70                 | 1        | 0.9  | 0.0031 |             |  |  |  |

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

| Intended us  | e                       | Sugar beet (Uses:       | 1, 2, 3, 10)                    |        |      |        |       |  |  |  |
|--------------|-------------------------|-------------------------|---------------------------------|--------|------|--------|-------|--|--|--|
| Application  | method                  | downward sprayin        | g                               |        |      |        |       |  |  |  |
| Crop catego  | ory                     | sugar beet <sup>1</sup> |                                 |        |      |        |       |  |  |  |
| Active subst | ance                    | Glyphosate              |                                 |        |      |        |       |  |  |  |
| Use pattern  |                         | 1-3 x 1440 g a.e./h     | a <sup>2</sup>                  |        |      |        |       |  |  |  |
| Test design  | Endpoint<br>(lab.)      | Scenario                | Scenario BBCH Ef SV ETR Trigger |        |      |        |       |  |  |  |
|              |                         | treated crop<br>Weeds   | < 10                            | 1      | 0.9  | 0.0031 |       |  |  |  |
|              |                         |                         | $\geq 70$                       | 1      | 0    | 0.0000 |       |  |  |  |
|              |                         |                         | < 10                            | 1      | 6.5  | 0.0227 |       |  |  |  |
|              |                         |                         | $\geq 70$                       | 0.25   | 6.5  | 0.0057 |       |  |  |  |
| Acute oral   | $LD_{50} > 412 \ \mu g$ | C 11 .                  | < 10                            | 0.0092 | 6.5  | 0.0002 |       |  |  |  |
| toxicity     | a.e./bee                | field margin            | $\geq 70$                       | 0.0092 | 6.5  | 0.0002 | 0.036 |  |  |  |
|              |                         |                         | < 10                            | 0.0033 | 11.2 | 0.0001 | -     |  |  |  |
|              |                         | adjacent crop           | $\geq 70$                       | 0.0033 | 11.2 | 0.0001 | 1     |  |  |  |
|              |                         |                         | < 10                            | 1      | 0.9  | 0.0031 | ]     |  |  |  |
|              |                         | next crop               | $\geq 70$                       | 1      | 0.9  | 0.0031 | 1     |  |  |  |

First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 - Sugar beet

Ef: exposure factor; SV: shortcut value; ETR: exposure toxicity ratio. <sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator, <sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

#### First-tier assessment (oral exposure) of the risk for bumble bees due to the use of MON 52276 - legume vegetables

| Intended use | 9                       | Legume vegetables (Use            | s: 1, 2, 3, 6, 1                | 0)     |      |        |      |  |  |  |
|--------------|-------------------------|-----------------------------------|---------------------------------|--------|------|--------|------|--|--|--|
| Application  | method                  | downward spraying                 |                                 |        |      |        |      |  |  |  |
| Crop catego  | ry                      | pulses <sup>1</sup>               |                                 |        |      |        |      |  |  |  |
| Active subst | ance                    | Glyphosate                        |                                 |        |      |        |      |  |  |  |
| Use pattern  |                         | 1-2 x 1440 g a.e./ha <sup>2</sup> |                                 |        |      |        |      |  |  |  |
| Test design  | Endpoint<br>(lab.)      | Scenario                          | Scenario BBCH Ef SV ETR Trigger |        |      |        |      |  |  |  |
|              |                         |                                   | < 10                            | 1      | 0.9  | 0.0031 |      |  |  |  |
|              |                         | treated crop                      | 10 49 <sup>3</sup>              | 1      | 11.2 | 0.0391 |      |  |  |  |
|              |                         |                                   | $\geq 70$                       | 1      | 0    | 0.0000 |      |  |  |  |
|              |                         |                                   | < 10                            | 1      | 6.5  | 0.0227 |      |  |  |  |
| Acute oral   | $LD_{50} > 412 \ \mu g$ | Weeds                             | 10 - 49 <sup>3</sup>            | 1      | 6.5  | 0.0227 |      |  |  |  |
| toxicity     | a.e./bee                |                                   | $\geq 70$                       | 0.3    | 6.5  | 0.0068 | 0.03 |  |  |  |
|              |                         |                                   | < 10                            | 0.0092 | 6.5  | 0.0002 |      |  |  |  |
|              |                         | field margin                      | 10 - 49 <sup>3</sup>            | 0.0092 | 6.5  | 0.0002 |      |  |  |  |
|              |                         |                                   | $\geq 70$                       | 0.0092 | 6.5  | 0.0002 |      |  |  |  |
|              |                         | adjacent crop                     | < 10                            | 0.0033 | 11.2 | 0.0001 |      |  |  |  |

| Intended use | e                  | Legume vegetables (Use                 | s: 1, 2, 3, 6, 1                 | 0)     |      |        |  |  |  |
|--------------|--------------------|----------------------------------------|----------------------------------|--------|------|--------|--|--|--|
| Application  | method             | downward spraying                      |                                  |        |      |        |  |  |  |
| Crop catego  | ry                 | pulses <sup>1</sup>                    |                                  |        |      |        |  |  |  |
| Active subst | ance               | Glyphosate                             | Glyphosate                       |        |      |        |  |  |  |
| Use pattern  |                    | 1-2 x 1440 g a.e./ha <sup>2</sup>      | -2 x 1440 g a.e./ha <sup>2</sup> |        |      |        |  |  |  |
| Test design  | Endpoint<br>(lab.) | Scenario                               | Scenario BBCH Ef SV ETR Trigger  |        |      |        |  |  |  |
|              |                    |                                        | 10 - 49 <sup>3</sup>             | 0.0033 | 11.2 | 0.0001 |  |  |  |
|              |                    |                                        | $\geq 70$                        | 0.0033 | 11.2 | 0.0001 |  |  |  |
|              |                    |                                        | < 10 1 0.9 0.0031                |        |      |        |  |  |  |
|              |                    | next crop $10 - 49^3$ 1 $0.9$ $0.0031$ |                                  |        |      |        |  |  |  |
|              |                    |                                        | $\geq 70$                        | 1      | 0.9  | 0.0031 |  |  |  |

<sup>1</sup> Crop category chosen according to the recommendations of the EFSA GD on the Risk Assessment on Bees (2013) and the EFSA Screening Step and 1<sup>st</sup> Tier Calculator,

<sup>2</sup> Max. single application rate of 1440 g a.e./ha considered for risk calculation as it covers lower rates.

<sup>3</sup> Scenario only relevant for uses 6a and b for which the highest intended application rate is 1.08 kg a.s./ka.

### Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

#### Laboratory tests with standard sensitive species

| Species               | Test<br>Substance | End point                                                     | Toxicity                                                                                                     |
|-----------------------|-------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Typhlodromus pyri     | MON 52276         | Mortality, LR <sub>50</sub><br>Reproduction, ER <sub>50</sub> | 100% mortality at10 L MON<br>52276/ha (3.6 kg a.e/ha) on day 4<br>No reproduction endpoint<br>(supportive)*  |
| Aphidius rhopalosiphi | MON 52276         | Mortality, LR <sub>50</sub><br>Reproduction, ER <sub>50</sub> | 100% mortality at10 L MON<br>52276/ha (3.6 kg a.e/ha) on day 4<br>No reproduction endpoint<br>(supportive)** |
| Additional species    |                   |                                                               |                                                                                                              |
| Poecilus cupreus      | MON 52276         | Mortality, LR50                                               | > 10 L/ha (3600 g a.e./ha)                                                                                   |
| Pardosa sp.           | MON 52276         | Mortality, LR <sub>50</sub>                                   | > 10 L/ha (3600 g a.e./ha)***                                                                                |

a.e.: glyphosate acid equivalent

\* guideline used does not meet current standards. Alteration of moving behaviour due to wet sticky layer on the treated glass plates.

\*\*guideline used does not meet current standards. Control with 60 instead of 100 mites.

\*\*\*reliable for application from the beginning of August onwards. Supportive for application from the beginning of August onwards (sensitivity of the collected spiders may be lesser than for over-wintered individuals)

#### First tier risk assessment covering all representative uses at 1800 g a.s./ha x 2

(worst case assumption made : maximum dose rate, maximum number of application, default MAF set at 2)

| Test substance | Species | Effect                  | HQ in-field | HQ off-field | Trigger |
|----------------|---------|-------------------------|-------------|--------------|---------|
|                |         | (LR <sub>50</sub> g/ha) |             |              |         |

| Test substance | Species               | Effect HQ in-field HQ off-field |                      | Trigger     |   |
|----------------|-----------------------|---------------------------------|----------------------|-------------|---|
|                |                       | (LR <sub>50</sub> g/ha)         |                      |             |   |
| MON 52276      | Typhlodromus pyri     | No reliable endpoint            |                      |             | 2 |
| MON 52276      | Aphidius rhopalosiphi | No reliable end                 | No reliable endpoint |             |   |
| MON 52276      | Poecilus cupreus      | >3600                           | <1                   | <0.024 (1m) |   |
| MON 52276      | Pardosa sp.           | >3600                           | <1                   | <0.024 (1m) |   |

#### Extended laboratory tests, aged residue tests

| Species                  | Life<br>stage   | Test<br>substance,<br>substrate                                       | Time<br>scale | Dose<br>(g/ha) <sup>1,2</sup>       | End point                | % effect <sup>3</sup>                                                                                                              | ER <sub>50</sub>                      |
|--------------------------|-----------------|-----------------------------------------------------------------------|---------------|-------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Typhlodromus<br>pyri     | proto-<br>nymph | MON<br>52276<br>Leaves of<br>potted vine<br>plants<br>Extended<br>lab | 18d           | 3, 6 and 12<br>L prod /ha           | Mortality                | 84% at 6 L<br>prod./ha<br>89% at 12 L<br>prod./ha<br>(supportive)*                                                                 | -                                     |
| Typhlodromus<br>pyri     | proto-<br>nymph | MON<br>52276<br>Leaf discs                                            | 14d           | 3 to 16 L<br>prod /ha               | Mortality (at<br>7d)     | 40% at 16.0<br>L/ha (5760 g<br>a.e./ha)                                                                                            | ER50 (repro)<br>≥ 12 L/ha<br>(4320 g  |
|                          |                 | of French<br>beans<br>Extended<br>lab / 2D                            |               |                                     | Reproduction<br>(at 14d) | Reduction in<br>no. of<br>egg/female<br>of 44.9 % at<br>12 L/ha and<br>56.5% at 16<br>L/ha<br>NOER = 8<br>L/ha (2880 g<br>a.e./ha) | a.e./ha)                              |
| Aphidius<br>rhopalosiphi | adult           | MON<br>52276<br>Extended<br>lab                                       | 2d+10d        | 3, 6 and 12<br>L prod./ha           | Mortality                | Effects on<br>mortality<br>less than<br>50% up to 12<br>L/ha                                                                       | Supportive**                          |
|                          |                 |                                                                       |               |                                     | reproduction             | No adverse<br>effects on<br>reproduction<br>up to 12L/ha                                                                           |                                       |
| Aphidius<br>rhopalosiphi | adult           | MON<br>52276<br>seedling                                              | 2d+10d        | 4, 6, 8, 12<br>and 16 L<br>prod./ha | Mortality                | LR50>16.0<br>L/ha (5760 g<br>a.e./ha)                                                                                              | ER50 > 16<br>L/ha (5760 g<br>a.e./ha) |
|                          |                 | barley<br>Extended<br>lab / 3D                                        |               |                                     | reproduction             | NOER ≥ 16<br>L/ha (5760 g<br>a.e./ha)                                                                                              |                                       |

| Species                | Life<br>stage | Test<br>substance,<br>substrate | Time<br>scale | Dose<br>(g/ha) <sup>1,2</sup>  | End point    | % effect <sup>3</sup>                                                                    | ER <sub>50</sub>                                                      |
|------------------------|---------------|---------------------------------|---------------|--------------------------------|--------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Aleochara<br>bilineata | 3-4d<br>old   |                                 | 28d           | 28d 6, 8 and 12<br>L prod./ha  | Mortality    | > 12.0 L/ha<br>(4320 g<br>a.e./ha)                                                       | ER50 > 12<br>L/ha<br>(4320 g                                          |
|                        |               | lab                             |               |                                | reproduction | ER50 > 12<br>L/ha<br>(4320 g<br>a.e./ha)<br>NOER $\ge$ 12<br>L/ha<br>(4320 g<br>a.e./ha) | (4320 g<br>a.e./ha)                                                   |
| Chrysoperla<br>carnea  | larvae        | MON<br>52276<br>Extended<br>lab | 21d           | 0.6, 6 and<br>12 L<br>prod./ha | Mortality    | LR50 =<br>10.34 L<br>MON<br>52276/ha<br>Supportive<br>***                                | No reliable<br>endpoint<br>could be set<br>for<br>reproduction<br>*** |

<sup>1</sup> indicate whether initial or aged residues

<sup>2</sup> for preparations indicate whether dose is expressed in units of a.s. or preparation

<sup>3</sup> indicate if positive percentages relate to adverse effects or not

a.e.: glyphosate acid equivalent

\*guideline used does not meet current standards. sensitivity of species questionable.

\*\*sensitivity of species questionable and low robustness

\*\*\* Sensitivity of species questionable. Control eggs < 15 (actual 7.9).

**Risk assessment** covering all representative uses at 1800 g a.s./ha x 2 based on extended lab test or aged residue tests

(worst case assumption made : maximum dose rate, maximum number of application, default MAF set at 2)

| Species             | ER <sub>50</sub> (g/ha) | In-field rate | Off-field rate  |
|---------------------|-------------------------|---------------|-----------------|
| T. pyri             | >4320                   | 3600          | 42.84 (1m / 2D) |
| A. rhopalosiphi     | >5760                   |               | 428.4 (1m / 3D) |
| Aleochara bilineata | >4320                   |               | 42.84 (1m / 2D) |

| Semi-field tests         |
|--------------------------|
| None                     |
| Field studies            |
| None                     |
| Additional specific test |
| None                     |

# Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

| Test<br>organism    | Test substance | Application<br>method of<br>test a.s./<br>OM <sup>1</sup> | Time scale      | End point                          | Toxicity                                                           |
|---------------------|----------------|-----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------------------|
| Earthworms          |                |                                                           |                 |                                    |                                                                    |
| Eisenia<br>fetida   | a.s.           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 473<br>mg a.s./kg<br>d.w.soil                               |
| Eisenia<br>fetida   | a.s.           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 21.31<br>mg a.s./kg<br>d.w.soil*                            |
| Eisenia<br>fetida   | MON 52276      | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 123<br>mg PP/kg d.w.<br>soil<br>(38 mg a.s./kg<br>d.w.soil) |
| Eisenia<br>fetida   | AMPA           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 131<br>mg AMPA/kg<br>d.w.soil                               |
| Eisenia<br>fetida   | AMPA           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 28.12<br>mg AMPA/kg<br>d.w.soil*                            |
| Eisenia<br>fetida   | AMPA           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>56 d | Mortality, growth and reproduction | NOEC = 19.7<br>mg AMPA/kg<br>d.w.soil*                             |
| Other soil m        | acroorganisms  |                                                           |                 | ·                                  |                                                                    |
| Folsomia<br>candida | a.s.           | Mixed into<br>substrate/<br>10% peat<br>content           | Chronic<br>28 d | Mortality and reproduction         | NOEC = 587<br>mg a.s./kg<br>d.w.soil                               |
| Folsomia<br>candida | AMPA           | Mixed into<br>substrate/<br>5% peat<br>content            | Chronic<br>28 d | Mortality and reproduction         | NOEC = 315<br>mg a.s./kg<br>d.w.soil                               |
| Folsomia<br>candida | MON 52276      | Mixed into<br>substrate/<br>5% peat<br>content            | Chronic<br>28 d | Mortality and reproduction         | NOEC = 1802<br>mg a.s./kg d.w.<br>soil                             |

| Test<br>organism       | Test substance | Application<br>method of<br>test a.s./<br>OM <sup>1</sup> | Time scale      | End point                     | Toxicity                              |
|------------------------|----------------|-----------------------------------------------------------|-----------------|-------------------------------|---------------------------------------|
| Hypoaspis<br>aculeifer | a.s.           | Mixed into<br>substrate/<br>5% peat<br>content            | Chronic<br>14 d | Mortality and<br>reproduction | NOEC = 473<br>mg a.s./kg<br>d.w.soil  |
| Hypoaspis<br>aculeifer | AMPA           | Mixed into<br>substrate/<br>5% peat<br>content            | Chronic<br>14 d | Mortality and<br>reproduction | NOEC = 320<br>mg a.s./kg<br>d.w.soil  |
| Hypoaspis<br>aculeifer | MON 52276      | Mixed into<br>substrate/<br>5% peat<br>content            | Chronic<br>14 d | Mortality and<br>reproduction | NOEC = 1802<br>mg a.s./kg<br>d.w.soil |

<sup>1</sup>To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %). \*Study considered as supportive.

Higher tier testing (e.g. modelling or field studies)

| Nitrogen transformation | a.s.      | < 25% effect at Day 28 at 33.1 mg/kg dry<br>soil *             |
|-------------------------|-----------|----------------------------------------------------------------|
| Nitrogen transformation | MON 52276 | < 25% effect at Day 28 at 28.8 mg a.e./kg dry soil             |
| Nitrogen transformation | АМРА      | < 25% effect at Day 28 at 160 mg/kg dry<br>soil (supportive**) |

\* Data gap: applicant to provide clarification related to the lack of nitrate measurement at day 7 in none of the treatments including control.

\*\* Datagap: applicant to submit soil nitrogen transformation rate expressed in mg nitrate/kg dry weight soil/day between each measurement day

#### Toxicity/exposure ratios for soil organisms

Risk envelope covering all representative uses at 3600 g a.s./ha x 1

| Test organism | Test substance | Time scale | Soil PEC <sup>1</sup> | TER  | Trigger |  |  |  |
|---------------|----------------|------------|-----------------------|------|---------|--|--|--|
| Earthworms    | Earthworms     |            |                       |      |         |  |  |  |
| E. fetida     | a.s.           | Chronic    | 5.123<br>(accu)       | 92.3 | 5       |  |  |  |
| E. fetida     | MON 52276      | Chronic    | 5.123<br>(accu)       | 7.4  | 5       |  |  |  |
| E. fetida     | AMPA           | Chronic    | 6.845<br>(accu)       | 19.3 | 5       |  |  |  |

| Test organism             | Test substance | Time scale | Soil PEC <sup>1</sup> | TER   | Trigger |  |  |
|---------------------------|----------------|------------|-----------------------|-------|---------|--|--|
| Other soil macroorganisms |                |            |                       |       |         |  |  |
| F. candida                | a.s.           | Chronic    | 5.123<br>(accu)       | 114.6 | 5       |  |  |
| F. candida                | MON 52276      | Chronic    | 5.123<br>(accu)       | 351.7 | 5       |  |  |
| F. candida                | AMPA           | Chronic    | 6.845<br>(accu)       | 46.0  | 5       |  |  |
| H. aculeifer              | a.s.           | Chronic    | 5.123<br>(accu)       | 92.3  | 5       |  |  |
| H. aculeifer              | MON 52276      | Chronic    | 5.123<br>(accu)       | 351.7 | 5       |  |  |
| H. aculeifer              | АМРА           | Chronic    | 6.845<br>(accu)       | 46.7  | 5       |  |  |

<sup>1</sup>indicate which PEC soil was used (e.g. plateau PEC)

## Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER<sub>50</sub> tests should be provided

| Laboratory dose response tests                                                                     |                   |                                                              |                                                   |                                              |                             |         |
|----------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------|---------|
| Species                                                                                            | Test<br>substance | ER <sub>50</sub> (g/ha) <sup>2</sup><br>vegetative<br>vigour | ER <sub>50</sub> (g/ha) <sup>2</sup><br>emergence | Exposure <sup>1</sup><br>(g/ha) <sup>2</sup> | TER                         | Trigger |
| Soybean, Lettuce,<br>Radish, Tomato,<br>Cucumber,<br>Cabbage, Oat,<br>Ryegrass, Corn,<br>Onion     | Glyphosate        | 145.7 (tomato,<br>dry weight)*                               | -                                                 | -                                            | -                           | -       |
| Cucumis sativus<br>Brassica napus<br>Raphanus sativus<br>Glycine max                               | MON 52276         | -                                                            | > 3610 g<br>a.s./ha                               | 3 x 720 g<br>a.s./ha                         | >181                        | 5       |
| Helianthus annuus<br>Lycopersicon<br>esculentum                                                    |                   |                                                              |                                                   | 2 x 1440 g<br>a.s./ha                        | >90.5                       |         |
| Zea mays<br>Triticum aestivum<br>Avena sativa<br>Allium cepa                                       |                   |                                                              |                                                   | 2 x 1800 g<br>a.s./ha                        | >72.4                       |         |
| Zea mays<br>Avena sativa<br>Allium cepa                                                            | MON 52276         | 28.4 g<br>a.s./ha**<br>(cucumber,                            | -                                                 | 3 x 720 g<br>a.s./ha                         | 1.42                        | 5       |
| Triticum aestivum<br>Cucumis sativus<br>Brassica napus                                             |                   | shoot length)                                                |                                                   |                                              | 6.92<br>(5m)                |         |
| <i>Brassica napus</i><br><i>Raphanus sativus</i><br><i>Glycine max</i><br><i>Helianthus annuus</i> |                   |                                                              |                                                   |                                              | 9.97<br>(50%<br>drift red.) |         |

| Species                                              | Test<br>substance | ER <sub>50</sub> (g/ha) <sup>2</sup><br>vegetative<br>vigour | $ER_{50} (g/ha)^2$ emergence | Exposure <sup>1</sup><br>(g/ha) <sup>2</sup> | TER                                  | Trigger |
|------------------------------------------------------|-------------------|--------------------------------------------------------------|------------------------------|----------------------------------------------|--------------------------------------|---------|
| Lycopersicon                                         |                   |                                                              |                              | 2 x 1440 g                                   | 0.71                                 | 5       |
| esulentum                                            |                   |                                                              |                              | a.s./ha                                      | <b>3.46</b> (5m)                     |         |
|                                                      |                   |                                                              |                              |                                              | 6.80<br>(10m)                        |         |
|                                                      |                   |                                                              |                              |                                              | <b>1.42</b><br>(50%<br>drift red.)   |         |
|                                                      |                   |                                                              |                              |                                              | 6.92 (5m<br>+ 50%<br>drift red.)     |         |
|                                                      |                   |                                                              |                              |                                              | 2.85<br>(75%<br>drift red.)          |         |
|                                                      |                   |                                                              |                              |                                              | 13.84<br>(5m +<br>75% drift<br>red.) |         |
|                                                      |                   |                                                              |                              |                                              | 7.12<br>(90%<br>drift red.)          |         |
|                                                      |                   |                                                              |                              | 2 x 1800 g<br>a.s./ha                        | 0.57                                 | 5       |
| Zea mays<br>Avena sativa                             | MON 52276         | 69.87 g a.s./ha<br>(Lycopersicon<br>esculentum               | -                            |                                              | <b>2.77</b> (5m)                     |         |
| Allium cepa<br>Triticum aestivum<br>Cucumis sativus# |                   | (tomato),<br>shoot fresh                                     |                              |                                              | 5.44<br>(10m)                        |         |
| Brassica napus<br>Raphanus sativus<br>Glycine max    |                   | weight )                                                     |                              |                                              | <b>1.14</b><br>(50%<br>drfit red.)   |         |
| Helianthus annuus<br>Lycopersicon<br>esulentum       |                   |                                                              |                              |                                              | 5.54 (5m<br>+ 50%<br>drfit red.)     |         |
|                                                      |                   |                                                              |                              |                                              | <b>2.28</b><br>(75%<br>drift red.)   |         |
|                                                      |                   |                                                              |                              |                                              | 11.07<br>(5m +<br>75% drift<br>red.) |         |
|                                                      |                   |                                                              |                              |                                              | 5.70<br>(90%<br>drift red.)          |         |
| Extended laborator                                   | ry studies :      |                                                              |                              |                                              |                                      |         |

| Species             | Test<br>substance | ER <sub>50</sub> (g/ha) <sup>2</sup><br>vegetative<br>vigour | ER <sub>50</sub> (g/ha) <sup>2</sup><br>emergence | Exposure <sup>1</sup><br>(g/ha) <sup>2</sup> | TER | Trigger |
|---------------------|-------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----|---------|
| Semi-field and fiel | d test:           |                                                              |                                                   |                                              |     |         |

<sup>1</sup> explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)

<sup>2</sup> for preparations indicate whether dose is expressed in units of a.s. or preparation

\*ER50 is provisional. Data gap set for ECx values for phytotoxicity

\*\* Study considered supportive. However, since data for cucumber are not reliable in the other vegetative vigor study, the results of both vegetative vigor studies were considered together and the smallest endpoint of 28.4 g a.s./ha was used in the risk assessment.

# results for Cucumis sativus (cucumber) are not reliable

### Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

| Test type/organism | end point                        |  |
|--------------------|----------------------------------|--|
| Activated sludge   | EC <sub>50</sub> > 100 mg a.e./L |  |
| Pseudomonas sp     | No data                          |  |

### Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s. No data

Available monitoring data concerning effect of the PPP. No data.

### Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds<sup>1</sup>

| Compartment |                                           |
|-------------|-------------------------------------------|
| soil        | Parent (glyphosate), Metabolite 1 (AMPA)  |
| water       | Parent (glyphosate), Metabolite 1 (AMPA*) |
| sediment    | Parent (glyphosate), Metabolite 1 (AMPA*) |
| groundwater | Parent (glyphosate), Metabolite 1 (AMPA*) |

\* AMPA is not ecotoxicologically relevant for the compartments water, sediment and groundwater. For precautionary reasons AMPA is proposed as relevant residue due to the frequent detections in surface waters and groundwater and the widespread intended uses of glyphosate in almost all crops.

## Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

| Substance                                                                                                                                                                                                  | glyphosate |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Harmonised classification according to<br>Regulation (EC) No 1272/2008 and its<br>Adaptations to Technical Process [Table 3.1 of<br>Annex VI of Regulation (EC) No 1272/2008 as<br>amended] <sup>9</sup> : | H411       |
| Peer review proposal <sup>10</sup> for harmonised classification according to Regulation (EC) No 1272/2008:                                                                                                | H411       |

<sup>&</sup>lt;sup>9</sup> Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

<sup>&</sup>lt;sup>10</sup> It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

| Code Number<br>(Synonyms)                        | (IUPAC name /SMILES notation /InChiKey)                                                                                 | Structural formula                  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Glyphosate<br>-Parent                            | IUPAC/CA name:N-(phosphonomethyl)glycinePMGCP 67573SMILES notation:OC(=O)CNCP(=O)(O)O                                   |                                     |
| AMPA<br>- QSAR number M02                        | IUPAC/CA name:<br>Aminomethylphosphonic acid<br>CP 50435<br>SMILES notation:<br>NCP(=O)(O)O                             | О ОН<br>Р ОН<br>Н <sub>2</sub> N ОН |
| <i>N</i> -methyl AMPA<br>- QSAR number M03       | IUPAC/CA name:<br>[(Methylamino)methyl]phosphonic acid<br>CP 70948<br>SMILES notation:<br>CNCP(=O)(O)O                  | H <sub>3</sub> C P OH               |
| <i>N</i> -acetyl glyphosate<br>- QSAR number M04 | IUPAC/CA name:<br>N-acetyl-N-(phosphonomethyl)glycine<br>SMILES notation:<br>OC(=O)CN(CP(=O)(O)O)C(C)=O                 |                                     |
| <i>N</i> -acetyl AMPA<br>- QSAR number M05       | IUPAC/CA name:<br>[(Acetylamino)methyl]phosphonic acid<br>SMILES notation:<br>CC(=O)NCP(=O)(O)O                         | O<br>P<br>NHOH<br>H₃CO              |
| <i>N</i> -glyceryl AMPA<br>- QSAR number M06     | IUPAC/CA name:<br>(2,3-dihydroxypropanoyl-<br>amino)methylphosphonic acid<br>SMILES notation:<br>O=C(NCP(=O)(O)O)C(O)CO |                                     |
| <i>N</i> -malonyl AMPA<br>- QSAR number M07      | IUPAC/CA name:<br>3-oxo-3-(phosphonomethyl-amino)propanoic acid<br>SMILES notation:<br>O=C(CC(=O)O)NCP(=O)(O)O          |                                     |

| Methyl-phosphonic<br>acid<br>- QSAR number M08   | IUPAC/CA name:<br>Methylphosphonic acid<br>SMILES notation:<br>CP(=O)(O)O                                  | OH<br>P∕<br>H₃C OH                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <i>N</i> -methyl glyphosate<br>- QSAR number M09 | IUPAC/CA name:<br>2-[methyl(phosphonomethyl)amino]acetic acid<br>SMILES notation:<br>CN(CC(=O)O)CP(=O)(O)O | HO<br>O<br>O<br>H <sub>3</sub> C<br>O<br>O<br>H |
| HMPA<br>- QSAR number M10                        | IUPAC/CA name:<br>Hydroxymethylphosphonic acid<br>SMILES notation:<br>OCP(=O)(O)O                          | O OH<br>P OH                                    |